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Chapter 1

Introduction

1.1 Motivation

The research for this master’s thesis was motivated by the desire to gain a deeper under-
standing of two particular subject areas: rotating electric machinery and ferrofluids. Each
of these subjects straddle the gap between mechanical and electrical engineering, presenting
bountiful opportunities to learn, problem solve, and build.

Rotating magnetic fields are used to turn everything from screwdrivers and coffee
grinders to locomotive engines and ship propellers. These machines function on princi-
ples that are well understood and well documented. However, the design and construction
of these machines is a constantly evolving field. Engineers and scientists are continually
seeking ways to increase the power density, efficiency, and utility of these machines. While
this thesis does not discuss the design of industrial motors or generators, it does probe
the basic physics and engineering of these machines. In fact, the machine that has been
designed and built as part of this thesis was conceived in order to correct the deficiencies of
and to replace the conventional motor armatures that have been used to excite ferrofluids
in early experiments.

Ferrofluids are stable colloidal suspensions of permanently magnetized nanoparticles in
liquid volumes. These unique fluids exhibit superparamagnetic susceptibilities and offer new
and interesting ways to interact with fluids. The governing equations for these fluids are

being actively debated in the academic literature, allowing for interesting research at the first
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18 CHAPTER 1. INTRODUCTION

principles level. Ferrofluids have found applications in consumer products, like cooling for
loudspeakers and rotary exclusion seals for computer disk drives, in advanced technologies,
such as nano-electromechanical systems and sensors, as well as in biomedical applications,
such as directed drug delivery, therapeutic hyperthermia, and enhanced magnetic resonant
imaging. New applications are currently being conceived and implemented in a wide variety

of industries.

1.2 Fluxball

The term fluzball is used throughout this thesis to describe any combination of spherical
windings. This type of current system has been described and analyzed in various forms
dating back to 1883 [1,2]. The name has been applied broadly to any device created by
winding a coil around a sphere. The simplicity of this arrangement has led to a variety of
applications in the fields of magnetic sensing and uniform magnetic field generation [3-7].
Depending on the application, fluxballs have been designed and built with single or multiple
windings and in sizes ranging from a few inches to a few feet in diameter. These fluxballs
have been capable of generating magnetic fields of intensities between a few nano-Tesla (nT)
and a few milli-Tesla (mT). Appendix A describes some of the past implementations of
fluxballs.

Theoretically the fluxball provides a perfectly uniform magnetic field in the interior
volume of the winding. The design of a fluxball was considered for this thesis because a
machine was needed that could produce a volume with easily controlled uniform magnetic
fields. There were numerous other coil arrangements that could have been used to produce

uniform magnetic fields. A number of alternative arrangements are described in Chapter 2.

1.3 Fluxball Machine

The term fluzball machine refers specifically to the machine, shown in Fig. 1-1, built during
this thesis work. To the best of the author’s knowledge, this fluxball machine is one of
the largest and most powerful designs yet attempted. This fluxball machine features two

concentric, orthogonally oriented windings, each capable of producing a highly uniform
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Figure 1-1: The fluxball machine. This two concentric winding spherical electric machine
was built during the course of this thesis work in order to produce a 15¢m diameter spherical
volume of highly uniform rotating magnetic fields. The inner winding has a radius of 11cm,
while the outer winding has a radius of 16 cm.

magnetic field of 25 mT in the interior region of the inner sphere. When excited with
alternating currents that are out of phase by 90° a rotating magnetic field is generated.

Fig. 1-2 demonstrates this mechanism graphically.
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Towter = ipsinwit R

Figure 1-2: A rotating magnetic field is produced by driving two orthogonal coils with
sinusoidal currents with 90° phase shifts. The top row of images shows the magnetic fields
produced by the inner winding, while the second row shows the magnetic fields produced
by the outer winding. The bottom row shows the rotating magnetic field produced by the
combination of the inner and outer windings.
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Figure 1-3: A graphical overview of magnetic field imaging methods. [§]

1.4 Measuring Magnetic Fields

Operation and validation of the fluxball machine required some research into the area of
magnetic sensing. Depending on the particular magnetic sensing application, there are
generally two or three different methods that can be used to measure the magnetic fields.
Fig. 1-3 show some of these options and the applications for which they are suitable.

For this thesis, alternating current (AC) and direct current (DC) produced magnetic
fields of strengths between 0 and 25 mT were measured. The sensors that could be used
were nuclear magnetic resonant (NMR), induction method, or Hall effect sensors. De-
tailed descriptions of these methods, as well as many other methods, can be found in J.
L. Symonds’ article “Methods of Measuring Strong Magnetic Fields” [9]. NMR sensors,
which use radio-frequency signals to measure the resonant frequency of specific protons
in an applied magnetic field, are the most accurate, but they are prohibitively expensive.
Induction coils, which measure the applied magnetic fields by linking a small amount of
the flux with coils of wire, can have greater accuracy than Hall effect sensors, but these
sensors are generally built to each particular application. Great care must be taken in the
construction of induction sensors in order to realize their theoretical accuracy. Hall effect
sensors are readily available, inexpensive, integrated circuit packages that can be carefully
calibrated to give very good accuracy. For these reasons, Hall effect sensors were used to

measure the magnetic fields generated by the fluxball machine.
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Figure 1-4: The hexagonal peaking patterns produced by ferrofluids that are exposed to
perpendicular magnetic fields, 33 mT in this case [11].

Two different Hall effect sensors were used to make measurements for this thesis. The
first was a relatively expensive three axis probe and Teslameter combination manufactured
by F.W. Bell, a Sypris Test and Measurement Company(= $8,000). The second sensor is
a relatively inexpensive (= $35) three axis sensor containing three integrated circuit chips
positioned with their axis of sensitivity mutually orthogonal. This sensor was purchased
from GMW Associates and bore an Ametes logo on the chip package. Chapter 5 details the

evaluation and calibration of each of these sensors.

1.5 Ferrofluid Background and Applications

The research and development of ferrofluids has been an active interdisciplinary field since
their discovery more than thirty years ago. The primary starting point for understanding
the behavior of ferrofluids is R.E. Rosensweig’s text Ferrohydrodynamics [10]. Figs. 1-4
through 1-5 shows a few interesting ferrofluid patterns.

The academic literature and research concerning spin-up flows of ferrofluids lacks con-

sensus on the issue of ferrofluid rotation. The disagreement focuses on the role of spin
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Figure 1-5: The labyrinth instability produced by ferrofluids that are exposed to tangential
magnetic fields, 25 mT in this case. The fluid is constrained to a 1 mm layer by placing it
between two 10 cm diameter glass plates [11].

diffusion in the rotation of ferrofluids that are exposed to uniform rotating magnetic fields.
One side decouples the fluid mechanical and magnetic dynamics by taking the spin viscosity
term to be negligibly small and then argues that non-uniformities in the magnetic field alone
cause the rotation observed in ferrofluids. The other side points to fundamental properties
of the ferrofiuids, contesting that the linear and spin velocity terms in the magnetization
relaxation equation account for the rotation, with velocity profiles determined by the large
values of spin viscosity. Careful experiments have been conducted that seem to prove the
latter theory correct [12,13]. In these experiments values for the magnetization relaxation
time and spin viscosity were fit from measurements of ferrofluid velocity profiles using ul-
trasound velocimetry. These values showed good agreement with numerical simulations
conducted using the finite element software COMSOL Multiphysics [14].

The definitive experiment for resolving this disagreement would involve driving a volume
of ferrofluid with highly uniform magnetic fields and then measuring some quantity, either
magnetic of fluid dynamic, that reflects motion, or lack of motion, of the fluid volume. The

uniform magnetic field of the fluxball machine could be used to conduct this experiment,
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leading to a better understanding of the mechanics of ferrofluids.

Ferrofluids are currently being applied in a variety of different industries. They are being
used in loudspeakers and in electric power generation and transmission components because
of their enhanced heat transfer capabilities. Also, a number of industries have begun using
ferrofluids as liquid o-rings in rotary and exclusion seals. All of these applications take
advantage of ferrofluid response to DC magnetic fields.

The applications of ferrofluids that are excited by AC and rotating magnetic fields are
still being developed. Many applications are expected in the fields of micro and nano elec-
trical mechanical systems (mems/nems). Other expected application are in the biomedical
field where AC excited ferrofluids may be used for drug delivery, for biological material

separation, and to improve magnetic resonance imaging [15, 16].

1.6 Units

This thesis and the majority of the technical details are published in SI units. However,
because many of the supplies were ordered in English units, the design work was done in
a combination of English and SI units. In this thesis the English units are included, where

helpful, in parenthesis.



Chapter 2

Uniform Magnetic Field

2.1 Overview

There are many different combinations of geometric arrangements and current distributions
that can be used to produce uniform magnetic fields. Each of these arrangements has its
own benefits and drawbacks. The typical trade-offs are between the degree of uniformity
of the field, measured by deviation from the center of uniformity, the strength of the field,
the volume of uniform field region, and the accessibility of the uniform field region.

Air-cored, axially symmetric electromagnets are the most common type of magnets
used to generate uniform fields. When low density (< 10 mT) fields are required these
magnets are usually cooled by circulating air or cooling water through the magnets. When
much stronger fields are required, these magnets are cooled with cryogens. For magnets
requiring cooling systems the mechanical design must be done simultaneously with the
electro-magnetic design. D.B. Montgomery’s text Solenoidal Magnet Design gives insight
into the design process for these larger electro-magnets [17].

Information on the design of square, polygon, saddle, and a variety of other geometries
can be found in the academic literature [18-21]. The analysis of these coils is very similar
to the approach described in Section 2.2, but the simplifications and calculations are done
in cartesian geometry rather than cylindrical.

One final method for producing a uniform field is with permanent magnets. J.H. Jensen

and M.G. Abele describe in “Generation of Highly Uniform Magnetic Fields with Magne-
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tized Wedges” a method for producing a uniform field using wedges of permanent mag-
nets [22]. Using a mechanical systems to rotate the system of wedges, a highly uniform
rotating magnetic field could be produced. This type of apparatus was not considered for
the design of this machine because it would limit the type and variety of experiments that
could be performed (e.g. experiments involving an oscillating magnetic field).

The electromagnets discussed below are all air-cored, axially symmetric magnets that do
not require dedicated cooling systems. The design of these systems is well document because
of their broad applications in nuclear resonance experimentation, geomagnetic sensing, mag-
netic resonance imaging, etc.... The magnet designs described below were all considered
for the design of the test apparatus built during this thesis. The coil distributions presented
here are idealized. The practical design of a spherical coil system is described in Chapter 3

and is analyzed in Chapter 6.

2.2 Calculating Magnetic Fields

All of the magnetic fields that are calculated in this section depend completely on the
winding geometry and current distribution. The Biot-Savart Law is the only mathematical
tool required to solve for the magnetic field density, B, at a distance, r, from a moving
charge, q. The B-field is given by:

~ MoQV X igp

B 4mr?

T, (2.1)

where yg is the permeability of free space given in SI units. The signs of vectors B, v, and
iqp are given using the right-hand rule as shown in Fig. 2-1.

For the particular case of axially symmetric coils it is often easiest to use coil loops as the
basic unit of current and then calculate the total field by the superposition of each current
loop, again using the Biot-Savart Law. The field, B, at a point, P, given in cylindrical
geometry by the coordinates (r, ¢, z), due to a circular loop of current that is centered at

the origin with magnitude I and radius a, has field components B;, By, and B; and is given
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Figure 2-1: The magnetic field, B, generated by a moving charge, q, at a point, r measured
from ¢, is perpendicular to both the direction of motion, v, and the unit vector joining the
charge to the field point, iqp [23].

by egs. 2.2 - 2.7 [24].

ulkz D
B, —_— |-t —— 2.2
4rr(ar)l/2 [ P a—nZy 2t (2:2)
B, =0 (2.3)
ulk a? —1?2 - 22
B, = —— _ - = J 2.4
Arr(ar)l/? [Jl + (a—r1)2 + 22 2 24)
4dar 172
where k= (m) , and (2.5)
J1 and Jy are the elliptical integrals of Legendre given by [24]:
Ji= Kk) = /27r dé (2.6)
L Jo (1 —E2%sin? $)1/2 '
2r
Jy= E(k) = (1 — k%sin? ¢)/2dg (2.7)

0

Milan Garrett, in a series of articles, details how other useful properties of the coil
system, such as the magnetic vector potential, mixed gradients, and mutual inductance
between coaxial loops, can be calculated [25-27].

Finally, some useful pieces of the computer code, written to analyze these magnets, are

included in Appendix B.



28 CHAPTER 2. UNIFORM MAGNETIC FIELD

2.3 Helmbholtz Coils

A common method used to produce a uniform magnetic field, is a two coil system known
as a Helmholtz Coil. The Helmholtz coil consists of two windings of equal radius, a, placed
a distance, d, apart and energized with a current, /. The magnetic field at a point z along
the axis of the windings is given by eq. 2.8.

ola? 1 1
B.(r=0)= 102 ((zg ¥ )32 + (=—d2 1+ a2)3/2) (2.8)

When a/d = 1 the first two spatial derivatives of B,, 8B,/dz and §°B, /822, equal zero at
r = z = 0 and produce a volume of nearly uniform B near the center of the coils. Plots
of the magnetic field lines and uniform volumes produced by four Helmholtz coils with
different ratios of a/d can be seen in Fig. 2-2. Although properly spaced Helmholtz coils do
produce a nearly uniform field, the volume of the uniform region is limited and the number
of turns necessary to produce a field of the strength required for this machine make it an

impractical option.

2.4 Higher Order Coils

In the same manner that properly spacing two coils can eliminate second order gradients in
the magnetic fields, higher order gradients can be eliminated by the use of a larger set of
compensating coils. The literature is full of different combinations of geometry and current
distribution that can be used to create uniform magnetic fields compensated to almost any
order desired [28-34]. Fig. 2-3 shows four coil systems that can be found in the literature.
These coils systems have been sized to produce a spherical region, 15 cm in diameter, of
25 m'T uniform magnetic field with non-uniformity less than 0.1%. The turns per coil and
power consumption of the coil systems are listed in the figure. The dissipated power is
calculated by assuming that American Wire Gauge (AWG) 20 wire with a current rating

of 5 A is used to wind each coil.
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Non-uniformity of B-field (%)

Figure 2-2: The magnetic field lines produced by Helmholtz coils of different ratios of coil
radius, @, and coil separation, d. The shading on the plots shows the regions in which the
magnitude of the magnetic field is uniform to within 1%.
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5 cm
4128 Turn Maxwell Coil: 172.6 W/mT 6223 Turn Garrett Coil: 195.8 W/mT
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3787 Turn Barker Coil: 87.5 W/mT 2569 Turn Braunbek Coil: 96.7 W/mT

0 0.25 5 075 >1

Non-uniformity of B-field (%)

Figure 2-3: The magnetic field lines produced by three and four coil axially symmetric
magnets. Each magnet produces a 15 cm diameter spherical 25 mT uniform magnetic field
region with non-uniformity less than 0.1%. The total number of turns for the coil system
and the power consumed per mT of field density produced are listed along with the name
for each coil system. The shading on the plots shows the regions in which the magnitude
of the magnetic field is uniform to within 1% [35].
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Figure 2-4: Mathematical description of a fluxball of radius R with a uniformly distributed
winding in z with N total turns each carrying a current 7 as a sheet of surface current
flowing azimuthally, in the ¢ direction, and varying sinusoidally with the zenith angle, 6.

2.5 Fluxball

A perfectly uniform field can be produced by using a sinusoidal winding distribution. The
first description of this type of coil was presented by Eleuthére Mascart and J. Joubert
in their 1883 text, A Treatise on Electricity and Magnetism [1]. In their description, the
spherical coil was generated by the superposition of small, solenoidal currents of varying
radius. In subsequent models, the fluzball has been described mathematically as a current
sheet imposed on the surface of a sphere, as shown in Figure 2-4 |2]. For all of these models,
the scalar magnetic potential can be used to solve analytically for the magnetic field in the
regions inside and outside of the sphere. The field in the inner region is uniform and the

field in the region outside of the fluxball is that of a point magnetic dipole. The magnetic
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fields are given by eqgs. 2.9 and 2.10.

N, . _ poNi,

B= iR (ip cos @ — ipsin @) = iR i, <R (2.9)
A,MONZ' 3 /e . e

B = R (R/r)°(ir2cos0 + igsinf) r >R (2.10)

Again an approximate design of the machine was done, this time using the fluxball
geometry. The magnetic field lines and basic design information for this geometry are
shown in Fig. 2-5. Theoretically, the magnetic field is perfectly uniform inside the entire
volume of the spherical coil. However, to allow for the perturbation due to discretization of
the coil, even in this ideal case, the spherical coil in Fig. 2-5 has a radius of 8 cm in order

to produce a 15 cm diameter uniform region.

2.6 Conclusions

The fluxball is clearly a more effective magnet for producing a uniform magnetic field
than any of the previous coils examined. The total number of coils required, the power
consumption, and the required radius of the winding are significantly lower than the other
magnets considered. The disadvantages of the spherical magnet are the complexity of
construction and the limited access that is available to the uniform field region.

There is another family of coil systems that can be found in the academic literature
that bridge the gap between the three and four coils systems discussed in Section 2.4 and
the fluxball [24,35-40]. These systems are optimal coil systems that have been designed
for various applications and usually use larger numbers of compensating coils. For this
application the selection of the appropriate optimal solution would have provided a design
that was slightly less uniform and possibly consumed slightly less power. Based on the
overall size of this machine, power consumption was not a major concern, therefore, optimal
coils systems were not considered.

One final advantage of the fluxball, particularly for the theoretical research with fer-
rofluids, is the mathematical model itself. This model is relatively easy to work with in

spherical or cylindrical coordinates and allows for the analytical solution of many problems
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960 Turn Fluxball Coil: 12.3 W/mT

Figure 2-5: The magnetic field lines produced by a fluxball. The fluxball produces a 8 cm
diameter spherical 25 mT magnetic field region with theoretically perfect uniformity. The
total number of turns and the power consumed per mT of field density produced are listed.
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concerning the interactions between the fluids and fields. The coil systems of Section 2.4
require greater mathematical manipulation to account for the specific geometry of the coil.

While analytical work of this type can be done, it lends itself more to numerical analysis.



Chapter 3

Machine Design

3.1 Overview

Although the theory behind the fluxball is relatively simple, and there exist numerous
similar designs, the design of this particular machine was not simple. Two main design
goals drove the complexity of the design. First, a design goal was to generate a magnetic
field of 25 mT. This meant that multiple layers would need to be used to create the
windings and that thermal affects would be much greater. Technical specifications have
been written that specify the current carrying capacity of wire of standard sizes, however,
these specification become much less accurate when the wire is bundled together into a coil.
Therefore a protoype had to be built in order to test the winding design. The winding
design is discussed in greater detail in Section 3.3.

The second goal was to generate a rotating magnetic field. This meant that at least two
windings would need to be created and that their connections and interfaces would need to
be carefully designed. Because the decision was made to use concentric fluxballs for each
of the windings, the attenuation of the magnetic fields due to the diffusion of the magnetic
fields through the copper wire also needed to addressed. This attenuation was most easily

characterized by the skin depth, 4, of the material, given by:

§ = /2/(wuo), (3.1)
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Frequency )

(Hz) (mm)
1 65.2
10 20.6
50 9.2
60 8.4
100 6.5
500 2.9

1000 2.1

Table 3.1: The skin depth of copper calculated with p = g = 47 x 107" H/m and ¢ =
5.8 x 107 S/m.

where w is the angular frequency, p is the magnetic permeability, and o is the electri-
cal conductivity [23]. Table 3.1 lists the skin depth of copper, with p = pp = 47 x
10~ 7 Henries/meter and ¢ = 5.8 x 107 Siemens/meter, for frequencies between one and 1000
Hz.

The maximum thickness of the winding was ~ 6 mm, meaning that at frequencies above
30 Hz the magnetic field might be attenuated by the inner winding by more than 15%.
Furthermore, because the thickness was not uniform with respect to the incident magnetic
field, the attenuation would be non-uniform. In order to better understand the effects of the
winding on the magnetic fields, the mathematical model of the fluxball was used to analyze
the diffusion of the fields through the conducting sphere. Additionally, after the machine
was constructed the fields were measured at different excitation frequencies. The measured
attenuation was significantly smaller than predicted by simple skin depth approximations.
These measurements are discussed in Chapter 6.

Because of these complexities, a computer model was generated in Matlab and rendered
in Rhinoceros 3.0 [41,42]. These tools allowed for rapid model generation and validation
in the early stages of the design. These tools proved very useful for developing the basic
parameters of the design and for improving the construction of the fluxball. Appendix B
describes the modeling tools in greater depth.

While the main specifications for the construction of the machine were known from the

computer models before construction began, most of the details of assembly and interconnec-
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tion, both mechanical and electrical, were designed as the machine was being constructed.
Two facilities were used to build the fluxball machine — the MIT Hobby Shop and the
Laboratory for Electromagnetic and Electronic Systems (LEES) shop. The knowledge and
experience of the shop staffs were the key enablers to production of the fluxball machine.
Detailed drawings, descriptions, and images of the constructions process are included in

Appendix C.

3.2 Test Chamber

This machine was designed and built in order to have a test chamber with highly control-
lable, highly uniform magnetic fields. Therefore the size and shape of the test chamber was
the first detail to be designed. The test chamber needed to be able to contain a sphere
of ferrofluid that was large enough to be studied with the ultrasound velocimetry sensors
that are operated by the laboratory. These sensors have a diameter of 8.5 mm. Therefore
the test sphere should be approximately ten times larger, having a diameter in excess of
280 mm. Allowing for cable runs and for other devices, such as a torque transducer, that
may be desirable in the future, the inner chamber diameter was designed to be 15 cm in

diameter. Fig. 3-1 shows the initial concept drawing for the inner fluxball.
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Figure 3-1: Test chamber sizing for the inner fluxball. The ferrofluid test sphere needed to
be at least 80 mm in diameter to allow for ultrasound velocimetry equipment. Allowing for
additional sensors and equipment inside the chamber, the test chamber needed to have a
radius, Ry, of approximately 75 mm. Then leaving room for support structure, the initial
inner winding radius, Ruyinding, Was sized at 100 mm.

3.3 Winding Design

In order to generate a uniform field in the interior region of the sphere, the number of
turns per length along the axis of the winding needed to be uniform and the radius of the
winding needed to vary with the sin of the zenith angle, . This exact coil geometry was
not practically achievable for a fluxball with a large magnetic field. In this situation the
winding must be created by laying down multiple layers of wire at each height along the
axis of the winding. Therefore some wires would lay directly on the surface of the sphere,
but other wires would lay above the surface of the sphere by a few millimeters. Also laying
down the wires in such a way that the turns density remained constant while the radius

changed quickly would be very difficult to have done in practice. IFinally, the operation of



3.3. WINDING DESIGN 39

the spheres required that there be a mechanism for accessing the inner chamber in order
to change the ferrofluid test sphere or to route instrumentation. In order to solve these
problems, a number of different geometries were explored and the effect on the magnetic
fields were numerically predicted using the Biot-Savart Law.

Due to the necessity of laying down multiple layers of wire at each location along the
axis of the winding, the winding was bundled into slots so that the turns could lay with
the proper density along the axis of the winding. Additionally, a flange was required to
separate these slots so that turns could not slide from one slot to the next. These two
features were purely for construction reasons, and therefore it was desirable to reduce their
impact on magnetic field properties. The impact was reduced by using small slots and very
thin flanges.

In order to minimize the effect of skin depth, as well as to increase the turns density,
the smallest diameter wire that was capable of carrying the required current was used. The
required current was 5 A for a short interval (=1 min) and 2 A for continuous operations.
From wire property tables, including some deduction for bundling, it was hypothesized that
AWG 20 wire, with a diameter of 0.81 mm, would be smallest wire capable of carrying these
currents. The data sheet for this wire can be found in Appendix D. A prototype of two
winding slots was built in order to verify the capability of the bundled wire. Fig. 3-2 shows
the winding prototype.

The strength of the magnetic field in the interior of a spherical winding is given by

eq. 3.2:
~ poNd
B:= =g

T, (3.2)

where pg = 47 x 10~7 H/m is the permeability of free space, N is the total number of turns
on the sphere, 7 is the current in the winding, and R is the radius of the sphere taken at the
midpoint of the winding bundle. Based on the design of the test chamber and on estimates
for the required support structure, R was taken to be 10cm for the inner winding and 15¢m
for the outer winding. The 20 AWG wire size had been selected, and its current carrying
capacity verified with the prototype. This left only the number of turns to be calculated

for the desired field strength of 25 mT. The number of turns was a function of the slot
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Figure 3-2: A prototype of the fluxball winding that was built to verify the current carrying
capacity of the 20 AWG wire bundle. Two 1 c¢cm high bundles of 56 turns were wrapped in
series on a 7.5 cm diameter white delrin cylinder and separated by a 0.8 mm black plastic
flange. The first turn was secured to the cylinder by the turns that were wrapped on top of
it, while the final turn had to be secured with the yellow electrical tape shown at the top
of the picture. This made the terminals of the coil available, while not allowing the coil to
unwind.
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geometry and the numbers of layers per bundles, as given by eqs. 3.3-3.5.

N = slots * turns/slot (3.3)

2R
ts = 34
slots slot height — flange height (3.4)

slot height

turns/slot = layers % (3.5)

wire diameter

The slot and flange heights were selected from a catalog of standard material thicknesses,
and then it was calculated that 6 layers of wire would need to be wrapped in each slot to
produce the required magnetic field density. Each winding then had an Amp-turns density

of 308 A-turns/cm along the winding axis.

3.4 Structural Design

Once the test chamber dimensions were roughly known and the winding distribution was de-
signed, then the structure for supporting the winding could be designed. The ideal structure
for this machine would be perfectly spherical, have very thin, strong flanges for keeping the
winding distribution correct, and have very little radial thickness so that the winding radii
could be located very close together. There were not any commercially available structures
that met this description, so something had to be specially fabricated. Material selection,
design for fabrication, and design for future growth all had to be considered.

The material selected for the fluxball was polycarbonate. This is a very strong plastic
that is nonmagnetic, nonconducting, and relatively easy to machine. A wide variety of
sheets, shapes, and parts can be purchased in polycarbonate. As with all plastic, certain
liquid environments can be very destructive. For this device, ferrofluids made with oil or
water will be encountered, as well as some alcohol products. Polycarbonate is relatively
tolerant of these environments and is, therefore, a good choice for this application. Finally,
polycarbonate has a melting point of ~ 115° C (240° F'), which is below the expected
operating temperature of the winding. All of these properties made polycarbonate an
excellent choice for the fluxball structure.

A number of geometries were investigated for creating the spheres, but in the end discs
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0.50 mm Access 5.9 mm
Polycarbonate Flange . Tube Polycarbonate Disc

RO Sphere
of Ferrolinid
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i
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Figure 3-3: The design for fluxball winding support structures. Discs of different radii were
stacked and bonded in place to support the winding and test chamber apparatus.

were chosen as the basic building blocks. Thick discs were used to create the slots, and thin
discs were interleaved to serve as flanges. The inner radii of the spheres were cut in steps so
that assembly and later installations could be managed more easily. Dealing with doubly
curved surfaces can be quite challenging in terms of construction, so these were eliminated
altogether. A computer controlled OMAX waterjet cutter was used to precisely cut the
disc from large sheets of polycarbonate. Grooves were cut into all of the discs so that they
could be precisely aligned. The discs were then aligned and bonded in place with an acrylic
cement. The data sheets for the two thicknesses of polycarbonate sheet that were used to
construct the structure can be found in Appendix D. Fig. 3-3 shows the design for the inner

sphere. The outer sphere was built in precisely the same way.
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Characteristic Inner Fluxball Outer Fluxball
Interior B-field 54 mT/A 54 mT/A
Winding Axis Radius, r(6 = 0°) 10.36 cm 15.04 cm
Quadrature Axis Radius, r(6 = 90°) 11.02 cm 16.75 cm
Peak Current 5A 5A
Continuous Current 2A 2 A
Total Turns 1280 1920
Length of Winding 700 m 1568 m
Total Slots 32 48
Slot Height 5.9 mm 5.9 mm
Flange Height 0.50 mm 0.50 mm

Table 3.2: Magnetic, geometric, and electrical specifications for the fluxball machine.

3.5 Final Design

Fig. 3-4 shows how the two fluxball windings fit together to form a single machine. In order
to assemble all of the pieces together into a single machine a number of connections needed
to be designed and constructed. These details were generally designed and built in the shop
with the advice of the shop staff. See Appendix C for more details and more pictures.
Table 3.2 lists the characteristics of the fluxball machine. There was a difference in
radius between the winding axis and quadrature axis because the disc radii were calculated
and cut based on ordered rather than measured material thicknesses. The small differences
between ordered and actual values were multiplied by the number of slots and flanges,

leading to final fluxball windings that were slightly oblate.
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Figure 3-4: The design for the fluxball machine including support legs and inner fluxball
support tubing.



Chapter 4
Machine Operation

4.1 Lumped Parameter Model of Windings

Lumped parameter models are used in order to build the intuition and understanding re-
quired for operating complicated machinery. By the winding design this machine has high
inductance. Driving a highly inductive machine with alternating current requires detailed
knowledge of the frequency response of the circuit because the impedance of the circuit
changes significantly with excitation frequency. Operating parameters can then be tab-
ulated that enable the machine to be quickly reconfigured during experimentation. This
information is particularly important for this machine because it will be operated at a range
of frequencies while conducting experiments with ferrofluids.

The lumped parameter model seeks to characterize the machine by its response to single
frequency sinusoidal excitations across the frequency spectrum. The characterization is in
terms of the circuit’s inductance, capacitance, and resistance. These distinct circuit char-
acteristics are in reality all properties of the single circuit component - a single, continuous,
wire. The telegrapher’s equations would be a valid way to model this circuit, however the
periods of interest are long enough relative to the transit time of the signal down the wire
that a single set of circuit elements can be used to model the wire. Therefore, each of the
windings is characterized by the RLC circuit shown in Fig. 4-1.

The values for each of the components were predicted hased on the wire properties

and then the actual component values were measured using the Hewlett-Packard 4192A

45
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Rwi nding

Vs (t) /\/ Cwinding Lwinding

Figure 4-1: The lumped parameter model of the fluxball being driven by a time domain
voltage signal, V,(t). Each fluxball winding is characterized by it’s capacitance, Cyinding,
inductance, Lyjinding, and resistance, Ryinding-

Component Predicted Value Measured Value %Error

Rinner 23.3 Q2 24.0 Q 3.1
Linner 153.8 mH 172.8 mH 11.0
Cinner N/A 140 pF N/A
Router 52.1 53.0 1.7
Louter 517.5 mH 570.0 mH 9.2
Coruter N/A 140 pF N/A

Table 4.1: The predicted and measured values of resistance, inductance, and capacitance for
each fluxball winding. Resistance values were measured at 5 Hz. Inductance and capacitance
measurements were taken in the frequency mid-range (=100 — 5000 Hz for inductances and
~ 100 — 5000 kHz for capacitances).

LF Impedance Analyzer. The complex impedance of each circuit was measured across the
entire range of the impedance analyzer, 5 Hz to 13 mHz. The measured and predicted
values for the circuit components are listed in Table 4.1

4.1.1 Resistance

The resistance of the windings were accurately predicted from properties of the wire. The

resistance of a length of wire is given by eq. 4.1:

R="2f @ (4.1)
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where L, is the length of the wire in meters, p is the resistivity of the conductor in £2-m,
and a is the cross sectional area of the conductor in m?. AWG 20 copper wire at 20° C has

p=1724x 1078 Q-m and a = 72, = m(0.4064 x 10~3)2 = 0.5189 x 10~ m?.

wire

4.1.2 Inductance

Hermann Haus and James Melcher, in their text Electromagnetic Fields and Energy, give
an expression for the external inductance of a spherical winding based on the model of the
fluxball as a ¢ directed current sheet [2]. Using eq. 4.2 and the fluxball properties given in

Table 3.2 the external component of the self inductance of each winding was predicted.
2 9 .
LezteTnal - §7TN ,LLOR Henries (42)

The internal inductance of the coil accounts for the energy that is stored inside the wind-
ing. This inductance is only a function of the length of the wire, [, and the permeability

of the wire, uo [23]. The internal inductance of wire is given by eq. 4.3.

Linternal = Hé(fr—w Henries (4.3)

Despite the length of each fluxball winding, the internal inductance contribution is only a
fraction of a percent of the total self-inductance.

The mutual inductance of the winding was predicted to be negligible due to the orthog-

onal orientation of the fluxball to one another. Measurements of the winding currents were

taken that verified this prediction.

4.1.3 Capacitance

Capacitance between the wires in the winding occurs at high frequencies when the current
in the wire does not have time to diffuse evenly into the wire; instead the charge resides on
the perimeter of the wire. The charge on the outside of the wire and the small separation
between the wires generates some capacitance. This effect was not of importance at the
operating frequencies of this machine, so the values were measured experimentally and noted

in Table 4.1 for completeness.



48 CHAPTER 4. MACHINE OPERATION

1e+007 F——r—r g
1e+0065—- ,,,,,, e T Y S Y .
/_\1000005_. ,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,, 3
<) 3 E
s i . : . . - : ]
E 10000 - - I RPN SRy S . BRI -
= £ . . X X X G . 3
£ r * ]
= 1000? ,,,,,, S . T 1=
100 -« --- N - A T L L -
3 & 2B : : : : e
]

Jd

101

10 100 1000 10000 1060000 1e+006 1e+007

N PN AL DAL ]
L5 B S e
@
D
AB b _
o
0 ‘
ok L L I ¢ =X .. Y- S
T | il L sl L4l o b A N N
1 10 100 1000 10000 100000 1e+006 1e4-007
Frequency (Hz)
Modeled Measured Modeled Measured
— Q2 — O
Zinner Zinne’r szte'r Zouter

Figure 4-2: The complex impedance of the fluxball windings as a function of frequency.
The impedance magnitude and phase were measured using a Hewlett-Packard 4192A LF
Impedance Analyzer. The modeled values were calculated using the measured values given
in Table 4.1 and the impedance model given by eq. 4.4 and shown in Fig. 4-1.
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~

Frequency “ Zinner " ZZirmev‘ ” Zouter ” / Zauter

(H)  (9)  (Deg)  (®)  (Deg)
1 24.0 2.6 53.1 3.9
5 24.6 12.7 55.9 18.7
10 26.3 24.3 64.0 34.0
20 324 42.1 &9.1 53.5
30 40.5 53.6 119.8 63.7
40 49.6 61.1 152.7 69.7
50 594 66.1 186.8 73.5
60 69.4 69.8 221.3 76.1
70 79.7 72.5 256.2 78.1
80 90.1 74.6 2914 79.5
90 1060.6 76.2 326.7 80.7
100 111.2 77.5 362.1 81.6

200 218.5 83.7 718.3 85.8

300 326.6 85.8 1076.0 87.2

400 435.0 86.8 1434.3 87.9

500 543.5 87.5 1792.9 88.3

1000 1087.0 88.7 3593.1 89.1

Table 4.2: Impedance magnitude and phase calculated at particular operating frequencies
for both the inner and outer fluxball windings.

4.1.4 Complex Impedance

Once the values of all of the circuit components are known, then it is convenient to model

the circuit by it complex impedance. Eq. 4.4 gives the expression for input impedance, Z,

of the circuit shown in Fig. 4-1 as a function of angular frequency, w.

jw o B
c +ic 0 (4.4)

7 = -
Fig. 4-2 graphically describes the circuit’s measured and modeled complex impedance
using the component values given in Table 4.1. Table 4.2 lists the values for the impedance

of the windings at particular frequencies that may be used to operate the machine.
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4.2 Additional Circuitry

The fluxball windings could be driven in a variety of a ways. The difficulty, as always,
was how to drive them so that the important electrical and magnetic properties could be
easily controlled and measured. A number of different options were tested before the final
method described here was chosen. The following parts were used for evaluation, testing,
and operation of the fluxball machine: a personal computer with LabVIEW installed, the
National Instrument’s accessory BNC 2120, one dual channel LVC 5050 power amplifier,
two 1, 50 W resistors, a 5V DC power supply, magnetic sensors that will be described in
Chapter 5, and numerous BNC cable connectors.

The LabVIEW PC interface provided a robust platform for performing numerous tasks
from generating waveforms to measuring currents and voltages from magnetic sensors to
writing and saving files of data. Using software generators, two drive signals were created
and routed to analog output BNC connections on the BNC 2120. From here the signals were
sent to the amplifier. Figs. 4-3 and 4-4 show the front and back panels from the LabVIEW
user interface that was built to operate the fluxball machine.

LEES operates two AE Techron Inc. LVC 5050, high voltage, general purpose, linear
power amplifiers. The data sheet for these amplifiers is included in Appendix D. For the
most part a single amplifier was used in the 20 gain mode. Since the BNC 2120 was able to
provide up to 10 volts and the amplifier began clipping and distorting the signal at ~ 120V
this gain mode was sufficient. However, both amplifiers, operated in the parallel channel
mode, would be needed to operate the fluxball machine at it highest rated current of 5 A
at high frequencies.

In series with the fluxball windings were two 1 (2 resistors. The resistors, arranged in
this way, changed the circuit characteristics only minimally while ensuring that changes to
the drive circuitry or connections would not affect the winding current measurements. The
currents through the measurement resistors were equal to the currents through the fluxball
windings and proportional to the voltage across the resistors with a small correction for the
actual resistor values, listed in Table 4.3.

The voltages from the current measurement resistors, as well as voltages from the mag-
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O NN NN

Figure 4-3: A screen shot of the user interface of the LabVIEW program that was used to
excite, control, and measure the fluxball machine during operation.

Component Measured Value
Reirer 1.028 Q
R 1.037 Q

Mouter

Table 4.3: The measured values of the 1) current measurement resistors.
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netic field sensor, were then acquired by the eight analog input pins on the BNC 2120.
These waveforms were displayed to the screen and written to files for further processing in
Matlab. Labview also performed a calculation of the peak current in each winding and used
this value to adjust the amplitude of the output voltage in order to maintain a constant
current in the winding. The voltage controller was a proportional feedback controller with

some saturation logic.

4.3 Operation of the Fluxball Machine

4.3.1 Normal Operation

When operating the fluxball machine at any frequency above a few Hertz, the impedance
characteristics are dominated by the inductance of the windings. As the impedance increases
the voltage required to provide the same amount of current increases at the same rate. The
voltages, Vop, required for operation at a given frequency and magnetic field density, B, can
be quickly calculated from the impedance, 7, and current, fop, of the circuit using egs. 4.5
and 4.6 and Table 4.2.

~ ~ ~

Vop — dop (Zwinding + Rm) \% (45)

B=541, mT (4.6)

For convenience, Table 4.4 lists the Vop required for each winding to produce a magnetic

field density of 1 mT in the interior region of the fluxball machine for some particular
frequencies.

Table 4.4 demonstrates that it quickly becomes impractical to operate the fluxball ma-

chine at high frequencies to produce 1 mT, let alone the 25 mT that it was designed to

produce. Clearly another mode of operation needed to be devised.
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F‘I’equency II Vopinner ” Z Vopinner H Vopouter ” Z Vopouter
(Hz) (V/mT)  (Deg) (V/mT)  (Deg)

1 4.6 2.5 10.8 3.8
5 4.7 12.2 114 18.3
10 5.1 23.5 13.0 33.5
20 6.1 40.9 17.9 53.0
30 7.6 52.5 241 63.3
40 9.3 60.0 30.6 69.3
50 111 65.2 374 73.2
60 12.9 69.0 44.3 75.9
70 14.8 71.8 51.3 77.8
80 16.7 73.9 58.3 79.3
90 18.7 75.6 65.4 80.5
100 20.6 77.0 72.4 81.4
200 40.5 83.4 143.7 85.7
300 60.5 85.6 215.2 87.1
400 80.6 86.7 286.9 87.8
500 100.7 87.4 358.6 88.3
1000 201.3 88.7 718.6 89.1

Table 4.4: The operating voltages, Vop, required for each winding to produce a magnetic
field density of 1 mT in the interior region of the fluxball machine.



4.3. OPERATION OF THE FLUXBALL MACHINE 55

Rm Rwinding

Ve (t) Cwinding Lwinding

Figure 4-5: The model of one winding of the fluxball machine being operated with a resistor,
R, for measuring the current, and a capacitor, Cy, for generating resonance in the circuit.

4.3.2 Operation at Resonance

As mentioned above, the problem with the circuit is the large amount of inductance. This
problem can be eliminated by adding capacitance into the circuit. When the inductance
and capacitance in the circuit is perfectly matched, the impedance seen by the source is
purely resistive, and the circuit is said to be in resonance. Sometimes this type of change to
the circuit is also called power factor correction because it corrects the angle between the
voltage and current waveforms as delivered by the source. Fig. 4-5 shows the model of a
fluxball winding with the measurement resistor, R,,, and power factor correcting capacitor,
Cpy, added to the circuit.

The value of C}¢ depends on the operating frequency and can be calculated by finding

the imaginary part of the winding impedance, Z,inding, setting it equal to the negative of

the reactance of the capacitor, and then solving for Cp¢, as shown in eq. 4.7:

1
Cpp = ———=—— Farads. (4.7)

w Im(Zwénding

When the correct value of C,; is used in the resonant circuit, the imaginary components of

the impedance cancel, and the magnitude of the voltage required only depends on the real
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Figure 4-6: The real and imaginary components of the fluxball windings as a function of
frequency. The impedance magnitude and phase were measured using a Hewlett-Packard
4192A LF Impedance Analyzer. The modeled values were calculated using the measured
values given in Table 4.1 and the impedance model given by eq. 4.4 and shown in Fig. 4-1.
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part of Zyinding, given by eq. 4.8:

5 R,

Re(Zwmdmg) = w4(Lwa)2 n w2((Rwa>2 — 2Lwcw) n 1 Q y (48)

where the subscript, w, refers to the parameter of the given winding.

Fig. 4-6 shows the real and imaginary components of the winding impedance for both
windings for the range of frequencies where the fluxball machine would be operated. There
is a substantial difference in the measured and modeled values of the impedance at the
higher frequencies that is due to measurement error. This error occurs when the angle of
Zwinding 18 very close to 90°. Because the angle is so steep, small errors in measurements
create very large errors in the calculated values. For this region it is more accurate to use
the mode] than the measurements.

Throughout the frequency range where the fluxball machine will be operated, Re(Z,,inding)
changes its value only slightly. Therefore, a single value for the voltage, Vop, required to
produce a magnetic field density of 1 mT in the interior region can be calculated. The ap-
proximate values for Vop are 5V and 10.8 V for the inner and outer windings, respectively.
This is only true when a perfectly matched Cp; is used. Table 4.5 lists resonant capacitor
values for particular frequencies.

Looking at the voltage ratings required for the capacitors listed in Table 4.5 it is clear
that operation in the resonance mode is not as easy a solution as it first appears. Capacitors
rated for alternating current operation in the kilo-Volt range quickly become very large and

very expensive.
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Frequency Cpf inner VCPfinne'r Cpf outer VCPfouteT
(Hz) (1F) V) (1F) V)
1 147,000 5 44,400 20
5 5,860 30 1,780 90
10 1,460 60 444 180
20 366 120 111 360
30 163 170 49.4 540
40 91.6 220 27.8 720
50 58.6 280 17.8 900
60 40.7 330 12.3 1,080
70 29.9 380 9.07 1,260
80 22.9 440 6.94 1,440
90 18.1 490 5.47 1,620
100 14.7 550 4.44 1,800
200 3.67 1,090 1.11 3,590
300 1.63 1,630 0494 5370
400 0916 2,180  0.278 7,200
500 0.58 2,720  0.178 8,960
1000 0.146 5440  0.044 18,000

Table 4.5: Capacitors, Cp¢, required to create resonance in the fluxball windings at particu-
lar operating frequencies. V¢, is the required voltage rating for C)¢ operation at maximum
rated current of 5 A.
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Sensor Calibration

5.1 Sensors

5.1.1 Hall Effect

The Hall Effect was discovered by Edwin Hall in 1879. Hall observed that current flowing
perpendicular to a magnetic field was deflected by the Lorentz force on the charge carriers.
The deflection of the charge carriers created an accumulation of charge on the faces of
the conductor. This accumulation of charge gave rise to a potential difference across the
volume of the conductor that could be measured across the faces of the conductor. Fig. 5-1
describes this phenomenon in greater detail.

Modern Hall effect sensors, like the ones described in this chapter, are fabricated from
semiconductors and incorporated into integrated circuit chips that condition the voltage
signal in a variety of ways. Often this conditioning includes amplification and temperature

compensation.

5.1.2 F.W. Bell Three Axis Probe and Teslameter

Fig. 5-2 shows the F.W. Bell Hall effect three axis magnetic probe and 7030 advanced triple
channel digital Teslameter. The specifications for this system are included in Appendix D.
The Tesla-meter was acquired by the laboratory in August of 2002, and the three axis probe

was purchased in March of 2007. The Tesla-meter has not been calibrated since arriving at

59
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Figure 5-1: The Hall voltage, Vy, generated in a conductor carrying current I by the
magnetic field B (a) when B = 0, (b) when B # 0, and (c¢) in the cross section of the
conductor when B # 0. Diagrams (a) and (b) show the lines of equipotential inside the
conductor. Diagram (c) describes the force mechanisms on the charge carriers [43].
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Figure 5-2: The F.W. Bell three axis probe and 7030 Teslameter System.

the laboratory. The total cost of this system was ~$8, 000.

Before any data was taken, all channels were zeroed using Advanced AC Zeroing op-
tion. All calibration data was collected from the probe using the corrected analog output
terminals. Each channel was kept in the 3.0mT éetting, and the analog outputs were in the

3.0 V setting.

5.1.3 GMW Three Axis Sensor

Fig. 5-2 shows the GMW Hall effect three axis magnetic sensor. The specifications for these
sensors are included in Appendix D. Six of the GMW sensors were purchased in March of
2007. The cost of each sensor was ~ $35. Small sensors of this type were desired because
they could be placed in the interior region of the fluxball machine in order to verify the
strength and uniformity of the magnetic field.

The GMW sensors were supplied a constant 5.0 V DC supply voltage. Voltage signals

were read from the pins of the sensors using a shielded 18 conductor data cable.
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Figure 5-3: GMW three axis sensor.

5.2 Calibration Equipment

5.2.1 Reference Magnetic Field

The inner fluxball winding was used to create a reference magnetic field. The fluxball was
arranged so that there was a 38 mm gap between the two hemispheres. This allowed for
room to insert and manipulate the probe and sensors during the calibration procedure. The
magnetic field created by the fluxball could be calculated numerically using the Biot-Savart
Law; this gave a predicted magnetic field of 4.08 mT. The field was then measured at DC
with each element of the three probe F.W. Bell Hall Effect probe. All sensors agreed that
the reference magnetic field, B,, was directly proportional to the current in the winding,
with the proportionality constant, «, equal to 4.47mT/A. Therefore the z directed magnetic

field could be calculated from the winding current, I, using eq. 5.1.
B.=al mT, a=447 mT/A (5.1)

Fig. 5-4 show the magnetic field lines for the fluxball in the calibration arrangement.
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0 0.25 05 075 >1
Non-uniformity of B-field (%)

Figure 5-4: The geometry and magnetic field lines for the inner fluxball as set-up for
calibration procedures. The gap between the hemispheres is 38 mm. The shading on the
plot shows the region in which the magnitude of the magnetic field is uniform to within 1%.
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5.2.2 LabVIEW Interface

LabVIEW was used as the primary tool for controlling the fluxball current, monitoring the
sensors, and taking measurements. A program was design to automate the data acquisition
process so that multiple frequencies and current amplitudes could be tested in a quick and
precise way. Data was acquired for a range of frequencies between 1Hz and 1kHz and a
range of field strengths between 0 and 5 mT. The upper limit on the field strength was set
by the sensitivity ranges on the F.W. Bell Teslameter. Going above 5 mT put the device
in a new sensitivity range that could not be changed automatically. This was not really
a limitation because of the proportionality of the reference field and because the GMW
sensors began to clip at 7.3 mT. The LabVIEW user interface used to control the reference

magnet during the calibration procedures was very similar to the one shown in Fig. 4-3.

5.2.3 Data Processing in Matlab

The raw waveform data was written into text files by the LabVIEW program. This data
could then be read into the Matlab workspace and processed. The processing routine
involved taking the raw waveform and calculating the peak magnetic fields on each sensor.
Each text file contained five waveforms. The first two waveforms were the voltages measured
across the 1€ resistors that were placed in series with the inner and outer magnet windings.
During calibration procedures only the inner winding was energized. The third, fourth,
and fifth waveforms corresponded to the voltages produced by the z, y, and z Hall effect
elements. Fig. 5-5 shows the voltage waveform data for a case where both windings are

energized.
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Figure 5-5: The raw voltage waveform data prior to processing in Matlab. One period of
data, corresponding to 50 samples, for the GMW sensor is shown. V, and V,, are excited by
the current in the outer winding and are, therefore, proportional to the voltage measured
on the outer winding measurement resistor, Vg .. Similarly, V, is proportional to Vg, ;
however, the direction is exactly opposite. This orientation was chosen for the GMW sensors
so that they could be positioned as closely as possible to the F.W. Bell probe elements.
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5.3 Procedure

A special apparatus was designed and built in order to keep the probe and sensor aligned
along all three axes. I'igs. 5-6 and 5-7 show this device.

Both devices were calibrated against the reference field by exciting one axis of the sensor
at a time. Care was taken to assure that the excitation at each sensor was precisely the
same by positioning the sensors at the exact center of the reference field. Additionally,
the excitation of the sensor in the axis being calibrated was = 100 times greater than the
excitation of the off axis elements. Figs. 5-8-5-11 show the calibration arrangements for all
three axes.

For the x and z elements three independent calibration runs were conducted across the
range of frequencies and field intensities. The first two runs were conducted one day and
then a third run was conducted on the following day. The sensors were left energized and
the geometry was unchanged between the second and third runs. For the y element two
runs were conducted on the same day. The entire procedure was completed in three days.

Once the data was collected, the probes were calibrated by fitting the data to the
known field using a third order polynomial fit. All of the data from a single run was used
to generate the fit. Higher order fits were tried, but they resulted in only marginally better

fits. Subsequent runs were plotted using the new fit to verify that it was correct.
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Figure 5-6: Probe and sensor alignment apparatus with GMW sensor removed. The circular
tip of the F.W. Bell probe can be seen; it is flush with the bottom of the milled slot for the
GMW sensor.

Figure 5-7: Probe and sensor alignment apparatus with GMW sensor installed.
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Figure 5-8: Calibration set-up for x and y axis Hall effect elements.

Figure 5-9: A close-up view of the calibration set-up for z and y axis Hall effect elements.



5.3. PROCEDURE 69

Figure 5-10: Calibration set-up for z axis Hall effect element.

Figure 5-11: A close-up view of the calibration set-up for z axis Hall effect element.
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5.4 Results

The calibration procedure was completed for the F.W. Bell probe and for one of the six
GMW sensors. The F.W. Bell sensor generally gave better precision across field strengths
and frequencies. However it had very poor accuracy in the y and z axis elements, indicating
that the systems needed to be calibrated by the manufacturer. Using the known field to
calibrate the probe the absolute error could be reduced to less than 25 pT. Additionally,
the calibrated error grew with the field strength so that the error never exceeded 1% of the
actual magnetic field. Fig. 5-12 shows the error in the F.W. Bell probe before and after the
calibration procedure.

The GMW sensors showed very good initial calibration. The absolute error across
the sensor sensitivity range was =~ +0.05 mT. Unlike the F.W. Bell system, the error
curve had a distinctly non-linear shape. This shape can be seen in Fig. 5-13. The sensor
measurements were very repeatable and had no significant frequency dependency. All three
sensors elements gave the best accuracy around 5 mT. Fitting this data to the known field

did not significantly improve the accuracy of the sensors.
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Figure 5-12: The initial and calibrated error for each element of the F.W. Bell three axis
Hall effect probe and Teslameter system. Each element was calibrated using a single set of
data points for one frequency of one run.
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Figure 5-13: The initial and calibrated error for each element of the GMW three axis Hall
effect sensor. Each element was calibrated using a single set of data points for one frequency
of one run
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Magnetic Field Measurements

6.1 Predicted Magnetic Field

The mathematical machinery for predicting the magnetic fields of the fluxball machine was
developed in Chapter 2. Using the current loop as the basic unit of current and neglecting
pitch in the current, the predicted field densities were calculated numerically. Fig. 6-1 shows
the field lines and predicted non-uniformity of the fluxball machine. The current systems
of the fluxball machine are irrotational (i.e V x B = 0), which means that all magnetic field
lines should close on themselves. Due to numerical limitation in the “streamline” plotting

function in matlab, this does not always happen.

6.2 Measured Magnetic Field

The calibration procedures described in Chapter 5 showed that the GMW sensors, using the
specified sensitivity of 280 mV /T, were accurate to £ 0.05 mT. Around 5.0 mT the GMW
sensors had an accuracy closer to + 0.015 mT. Therefore, the windings of the fluxball
were excited with AC signals of 1 A peak amplitude, generating a peak field of ~5.4 mT
and providing measurement accuracy in excess of 4+ 1.0%. Sensors were placed at six
different locations in the interior volume of the fluxball machine as shown in Fig. 6-2. A
new apparatus was constructed to accurately position the sensors in the fluxball machine.

Figs. 6-3 and 6-4 show the sensor platforms with the GMW sensors installed. Two different
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Figure 6-2: The locations of the sensors inside the fluxball machine for magnetic field
measurements. The number and coordinates, (z, z), of each sensor are shown. All sensors
were located at y = 0. The sensors are drawn to scale.

configurations had to be used to take all of the data. The first set was taken with two
sensor platforms mounted on a guide rail that was machined to fit into the access tubes,
thereby maintaining vertical alignment. The second set of data was taken with just one
sensor platform shimmed to the top of the inner winding structure. A 30 Hz AC waveform

was used to excite the fluxball winding for all of the field uniformity measurements.
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Figure 6-3: The side view of the sensor platform apparatus. The sensors were placed tightly
into a milled slot 4 cm apart from each other. The platforms were threaded onto a 20 cm
nylon screw and secured with lock washers. The data cables were run out of the machine
through the cable-ways, and the screws were capped with cylinders that fit tightly into the
access tubes.

Figure 6-4: The top view of the GMW sensor platform shimmed to the top of the inner
fluxball structure.
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6.3 Magnetic Field Uniformity

Measurements of the magnetic fields were taken with each winding energized alone and
then with both windings energized. Figs. 6-5-6-7 show the results of these measurements.
The inner winding produced magnetic fields that were z-directed, while the outer winding
produced magnetic fields that were z-directed. When each coil was energized alone the
magnetic field components along the two axes orthogonal to the winding axis were neg-
ligible. When both windings were operated simultaneously both z and z directed fields
were measured, producing very similar values to those measured when each coil was excited
alone.

Fig. 6-8 shows one period of the measured data for each sensor, as well as the predicted
magnetic field. The waveforms follow each other nicely, showing no distortion of the mag-
netic field. The measured waveforms had a larger amplitude, in the range of 5-9%, than
the predicted waveforms, as shown in Tables 6.1 and 6.2. The reasons for this error are
discussed in Chapter 7.

The mechanism for creating a rotating field is clearly present; however, the phase dif-
ference between the x and z directed fields is not 90° deg. This occurred because the
windings were excited with voltages, rather than currents, that were 90° deg out of phase.
As discussed in Chapter 4, the impedance characteristics of the winding are different and
therefore the angle between the voltage and the current is different. A slight adjustment
must be made to the phase difference in the excitation voltage waveforms in order to ac-
count for this. This correction depends on the operating frequeny. Using the LabVIEW
drive circuitry discussed in Chapter 4 this correction is easily applied.

Tables 6.1 and 6.2 list the predicted and measured magnetic field strength at the sensor’s

locations, as well as the error of the prediction and the non-uniformity of the field.
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Figure 6-5: The peak magnetic field density inside the fluxball machine with only the inner
winding excited by a 30 Hz AC signal with a peak amplitude of 1.0A. The peak values have
been measured over 20 periods and corrected for slight deviations in the winding current
from the 1 A peak amplitude.
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Figure 6-6: The peak magnetic field density inside the fluxball machine with the outer
winding excited by a 30 Hz AC signal with a peak amplitude of 1.0 A. The peak values have
been measured over 20 periods and corrected for slight deviations in the winding current
from the 1 A peak amplitude.
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Figure 6-7: The peak magnetic field density inside the fluxball machine with both windings
excited by a 30 Hz AC signal with a peak amplitude of 1.0 A. The peak values have been
measured over 20 periods and corrected for slight deviations in the winding current from
the 1 A peak amplitude.
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Figure 6-8: One period of the predicted, B,, and measured, B,,, magnetic field strength at
each sensor when both windings are energized with 1 A peak amplitude 30 Hz currents.
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Sensor  Position Position Predicted Measured FError Non-uniformity

Number z z B, B B, B,
(m)  (em)  (mT/A) (wT/A) (%) (%)

1 1 0 5.06 5.45 7.0 0.3

2 5 0 5.06 5.42 6.6 0.1

3 1 3 5.06 5.43 6.7 0.0

5 5 3 5.06 5.47 7.4 0.7

3 0 6 5.07 5.40 6.2 0.5

5 4 6 5.06 5.34 5.1 1.7

Table 6.1: The predicted and measured values of z-directed magnetic field density at each
of the sensor locations with both windings energized. The measured values have been
averaged over 20 periods. The field strength at the center of the test chamber is 5.43mT/A.
Both windings have been excited with 1 A peak amplitude 30 Hz currents, with the phase
relationship shown in Fig. 6-8.

Sensor  Position Position Predicted Measured FError Non-uniformity

Number T z B, B. B, B,
(em)  (em)  (mT/A)  (mT/A) (%) %)

1 1 0 5.02 5.48 8.5 0.9

2 5 0 5.01 5.38 6.8 0.9

3 1 3 5.03 5.41 7.0 0.4

5 5 3 5.03 5.46 7.9 0.5

3 0 6 5.05 5.42 6.9 0.2

5 4 6 5.03 5.50 8.5 1.3

Table 6.2: The predicted and measured values of z-directed magnetic field density at each
of the sensor locations with both windings energized. The measured values have been
averaged over 20 periods. The field strength at the center of the test chamber is 5.43mT/A.
Both windings have been excited with 1 A peak amplitude 30 Hz currents, with the phase
relationship shown in Fig. 6-8.
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6.4 Magnetic Field Diffusion

It was hypothesized, based on the skin depth of copper, that attenuation of the magnetic
field strength might be considerable at operating frequencies above a few Hertz. Using
the set-up already described, measurements were taken at six different frequencies. The
fluxball machine was operated with the inner winding open circuited and the outer winding
energized with the maximum voltage available using the normal mode of operation. The
current in the outer winding was measured and the expected magnetic field at DC, Bp¢,
was calculated for the location of the sensor.

The attenuation of the signal could then be measured by looking at the peak magnitudes
of the measured AC magnetic fields. Because the outer winding was energized, the uniform
field was in the x direction. Therefore, B, was compared with Bpc, and the attenuation due
to diffusion was calculated. Distortion of the signal could be seen by graphing a single period
of the magnetic field waveform. A small part of the distortion resulted from the response

time in the Hall effect sensor. Fig. 6-9 shows the results of the skin effect measurements.

6.5 Magnetic Field with a Sphere of Ferrofluid

A final experiment was conducted to measure the change in inductance of the fluxball when
a sphere of ferrofluid was placed inside the test chamber. In this configuration there are
three magnetic field regions. The derivation for the fields in this situation can be found in
the doctoral thesis of Shihab Elborai [12]. Modeling the ferrofluid as a linear, magnetizable

material and applying the constant flux condition, a new inductance, L,, can be derived.

2r3 [ pa — po
A By G L B .
b=t 3 ()] w 2

where Ly is the measured self-inductance of the winding at 1 kHz given in Table 6.3, rq is

L, is given by eq. 6.1:

the radius of the sphere of ferrofluid, r,, is the average radius of inner or outer winding,
given in Table 3.2, u, is the magnetic permeability of the ferrofluid, and ug is the magnetic
permeability of free space.

L, was measured with a 4 cm diameter sphere, r, = 2 cm, filled with MSG W11
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Figure 6-9: The distortion and attenuation of the z-directed magnetic field in the test
chamber, B,, produced by the outer winding at six different operating frequencies between
1-1000 Hz. B, is normalized by the DC magnetic field, Bpc, that would be produced by

the same current.
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Winding Initial Value Predicted Value Measured Value

LO Lap Lam
Inner 171.0 mH 174.9 mH 176.0 mH
Outer 559.7 mH 563.6 mH 561.4 mH

Table 6.3: The predicted, L,,, and measured, L,,,, values of inductance for each fluxball
winding with a 4 c¢m radius sphere of MSG W11 ferrofluid at the center of the fluxball
machine. L,, was based on an initial winding inductance, Ly, that was measured for each
winding without the sphere of ferrofluid inside the test chamber. All inductances were
measured at 1 kHz using a Hewlett-Packard 4192A LF Impedance Analyzer.

ferrofluid, manufactured by Ferrotec Corporation [44], placed in the middle of the fluxball
machine. MSG W11 has p, = 1.56p9 H/m. Table 6.3 lists the measured and predicted
values of the new inductance L, for both of the fluxball windings.

As predicted the inductance of the windings increased. However, there were significant
sources of error in both the prediction and the measurement. First of all the magnetic
permeability of the ferrofluid was not verified before it was placed into the 4 ¢cm sphere.
The permeability measurement dated back at least two years, during which time there
has most likely been degradation of the ferrofluid’s magnetic susceptibility. Additionally,
the measurement for the inner winding was somewhat unstable using the Hewlett-Packard
4192A LF Impedance Analyzer. The displayed value varied with every update between 173
and 178 mH.
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Chapter 7

Conclusions

7.1 Fluxball Machine

7.1.1 Error

This section describes the numerous sources for error in the measurement of the uniformity
of the magnetic fields. These sources of error were carefully considered and steps were
taken to minimize their effects. Nevertheless, significant error remained in some of the
measurements.

Appendix C described how the construction process was controlled to minimize error.
Once construction was complete, the geometric dimensions of the fluxball windings were
carefully measured. The turns were wrapped with care by the author of this report. The
process was very manual, and therefore susceptible to human error. Certainly a few extra
turns were wrapped in a few of the slots, but the cumulative error in the turns per fluxball
winding did not exceed 25 turns, 2% of the total turns.

All numerical predictions were based on the geometry of the fluxball machine as built.
Complete elliptical integrals were solved numerically using double precision numbers to give
the highest degree of accuracy to the numerical calculations.

The calibration of the measurement devices was described in detail in Chapter 5. Mul-
tiple sensors were used in the both the AC and DC modes to verify the strength of the

magnetic fields. These sensors gave very good agreement regarding the strength of the field
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in the inner region of the fluxball machine.

The data processing was very involved for the set of experiments described in this thesis.
The use of many sensors, in different locations, at different operating frequencies and field
amplitudes, made each calculation a little different from the previous. Data was continually
plotted graphically in order to ensure that signals were not being corrupted by noise or
other sources of error. Additional calculations were made whenever possible to serve as
“reality checks” on the processed data.

The main error that is obvious in the work described in this thesis is the difference in
magnitude of the predicted and the measured magnetic field densities. There is no real
mechanism for error in the prediction, and the measurement process was controlled so that
error should be less than 1%. Problems in the construction process can only account for
another 1-2% percent of the error.

The remaining error is mostly likely caused by reflected fields from the steel table upon
which the machine was sitting. The table is made of a large sheet of stainless steel with
non-zero conductivity and magnetic permeability. This table can be modeled as a plane of
infinite magnetic permeability, and the reflected fields can be calculated using the method
of images. This was done using the geometry of fluxball machine, with the origin of the
machine 21 cm above the table. The resulting predicted fields were 5% stronger than the
fields predicted when neglecting the image currents. Next the inner winding of the machine
was lifted so that its origin was 56 cm off the table and a measurement of the DC field was
taken with the winding excited by 1 A of current. The measured magnetic field was ~2%
weaker.

Despite the error in the magnitude of the magnetic fields, the uniformity of the fields
was very close to the predicted values, and well within the tolerance of the known error.
The values, for magnetic field strength, operating voltages, etc. .., given in this thesis reflect

the measured magnetic field densities.

7.1.2 Mathematical Model

The actual geometry of the fluxball machine is quite complex. To develop analytical solu-

tions for experiments that use the fluxball machine, it would be convenient to have a simpler
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mathematical model. The model described in Chapter 2 is very convenient since it only re-
quires 3 variables: the total number of turns on the ball, the radius of the winding, and the
current, ¢, in the winding. The proper radius, R,,, is the average radius of the winding and
quadrature axis. The proper number of turns, N,,, should be the calculated turns required
to produce the fields measured in Chapter 6. Eq. 7.1 gives the mathematical model for the
fluxball machine; the parameter values are listed in Table 7.1. Obviously, the coordinates
of one of the windings must be changed if the windings are oriented orthogonally.

N,
K- i¢2—én;isin9 (7.1)

Using this model, the magnetic fields, as shown in Chapter 2, are given by eqgs. 7.3 and 7.2.

Characteristic  Inner Fluxball Outer Fluxball

Interior B-field  5.43 mT/A 543 mT/A
Radius, R,, 10.7 ecm 15.9 cm
Turns, N,, 1392 2069

Table 7.1: Parameters for the mathematical model of the fluxball machine.

Npt . Nmt,
B = Mng (ircos @ — igsinf) = ,ung i, r<R (7.2)
- po Ny @ 3 /e . .
B = R (R /r)°(ix2cosf +igsinf) r> R, (7.3)
m

7.2 Future Ferrofluid Experiments

The fluxball machine can be used to conduct a large variety of experiments involving fer-
rofluids. Because of the spherical geometry of the current distribution, it is convenient
to work with spherical volumes of ferrofluids. An experimental set-up for working with a
sphere of ferrofluid has been established. An 8 cin diameter plastic ball was filled with fer-
rofluid using a syringe. This sphere was then placed at the center of the test chamber using
a funnel that was fitted to the bottom access tube of the inner fluxball structure. GMW
sensors were placed in the interior and exterior regions of the fluxball machine in order to

measure the changes to both the uniform field region and the point magnetic dipole field
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Figure 7-1: A top view of the inner fluxball winding with the sphere of ferrofluid positioned
at the center of the fluxball machine. The sphere of ferrofluid is held by a funnel that is
fitted to the bottom access tube. The funnel may be adjusted to hold spheres with different
diameters. The GMW sensors can be seen shimmed to the top of the test chamber, seen on
the hemisphere to the right.

region. This set-up can be seen in Figs. 7-1 and 7-2.

In addition to measuring changes in the magnetic fields that result from the addition
of ferrofluids to the machine, future fluid dynamical measurements could be made with the
fluxball machine. As described in Chapter 3, ultrasound velocimetry experiments could
be conducted inside the test chamber of the machine by running the ultrasound probes
through the machine’s cable-ways. These experiments would verify and build on the results

presented by Shihab Elborai and Xiaowei He [12,13]

7.3 Future Machinery Experiments

The demand for electrical power and speed has driven military and commercial shipbuilders
to move towards ever larger electric machines. The U.S. Navy has recently embarked on
the contract design of a new class of destroyers that will feature a fully integrated electric

propulsion system; an artist rendering of this ship can be seen in Fig. 7-3. This systems is
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Figure 7-2: A side view of the inner fluxball winding with the sphere of ferrofluid positioned
at the center of the fluxball machine.

composed of four gas turbine engines that provide electrical power for two 34.6 MW electric
motors, as well as all ship service electrical requirements [45]. The two large electric motors
will be operated in machinery rooms where personnel will be exposed to alternating and
rotating magnetic fields. While the medical community has studied the effects of electric
and magnetic fields on the human body, there is still not a consensus on the effects of low
and mid level magnitude fields in the low frequency range [46-50]. These are exactly the
types of fields to which shipboard personnel will be exposed. The fluxball machine could
be used to conduct a variety of experiments related to the biological effects of these types
of fields.

A second set of experiments that could be conducted using the fluxball machine involve
podded propulsors, such as the one show in Fig. 7-4. These pods contain large electric
motors that radiate very specific electromagnetic fields. While most of these fields are
confined to the ferrous elements of the motors, a portion of the fields radiate. These fields
are further attenuated by the enclosures that support them, which are usually made of steel.
Nevertheless, low-level fields passing through the propulsor enclosures are present and could

be used to detect and classify particular ships. The fluxball machine could be used to model
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Figure 7-3: An artist’s rendering of the next generation destroyer. This ship will have two
34.6 MW electric motors [45].

Figure 7-4: The podded propulsors installed on the Queen Mary 2. These are Rolls-Royce
Mermaid”™ pods that contain 21.5 MW Alstom electric motors [51].
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the flux leakage from large electric motors and to test the efficacy of propulsor enclosures

in containing radiated magnetic fields.
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Appendix A

Fluxball — A Design History

A.1 John W. Clark’s Fluxball

Figure A-1: A spherical magnet designed by John W. Clark in 1938 for producing uniform
magnetic fields used for nuclear research [3].
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Figure A-2: A fluxball of Clark’s design is still operated by the Physics Department at the
Massachusetts Institute of Technology.



A.2. JOHN A. HIPPLE JR.'S FLUXBALL

A.2 John A. Hipple Jr.’s Fluxball
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Figure A-3: Spherical winding drawing by John A. Hipple Jr. from his 1941 United States

Patent for a Magnetic Field Generator |7].
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A.3 William F. Brown and John H. Sweers’ Fluxball

Figure A-4: A 1945 fluxball test coil for point magnetic field measurements, as constructed
[4].

Figure A-5: A 1945 fluxball test coil for point magnetic field measurements, in cross section
[4].
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A.4 J.E. Everett and J.E. Osemeikhians’ Fluxball

Figure A-6: A 1966 three axis fluxball arrangement used to build a proton magnetometer [5].
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A.5 F. Primdahl and P Jensens’ Fluxball

Figure A-7: A 1981 three axis fluxball arrangement for fluxgate magnetometer vector feed-
back [6].



Appendix B

Computer Design Tools

B.1 MATLAB®

This section contains useful pieces of commented code that were used to aid in the con-

struction and analysis of the fluxball machine.

B.1.1 Magnetic Fields Generated by a Loop of Current

% Script Name: current_loop.m

% Author: Clint Lawler

% Date: 19 APR 2007

% This function calculates the magnetic field at a point (rp,zp) in

% cylindrical coordinates due to a loop of current with magnitude i_wire
% with radius r_wire that is centered at z_wire. J1 and J2 are the first
% and second elliptical integrals of Legendre

function [Br Bz] = current_loop(rp,zp,i_wire,r_wire,z_wire)
A

mu=pi*4e-7; z = zZp-z_wire; p = abs(rp); a = r_wire;

)
if p ==
Br = 0;
[J1 J2] = ellipke(0);
Bz = ellipke(0)*(1+(a"2-2"2)/(a"2+2z"2))*mu*i_wire/(2*pi*(a"2+z~2)"0.5);
return
end
h
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k=sqrt (4*a*p/((a+p) "2+272)); const = mu*i_wirex*k/(4*pi*sqrt(a*xp));
[J1 J2] = ellipke(k”Q);
if z ==
Br = 0;
else
Br = (rp/p)*const*(z/p)*(-J1+J2*%(a"2+p~2+2"2)/((a~p) "2+2"2));
end
Bz = const*(J1+J2%(a"2-p~2-2"2)/((a-p) "2+z"2));
%

B.1.2 Magnetic Fields by the Superposition of Current Loops

% Script Name: Magnet.m

% Author: Clint Lawler

% Date: 25APR2007

% Description: This script takes a winding geometry and current

% distribution, and then it calculates the magnetic field at specified

% positions and draws the magnetic field lines. If has an option to show
% the uniformity of the fields. The numbers specified here are for a

% Helmholtz coil. This routine is for air-cored, axially symmetric coils.
% The function current_loop is required.

percent_uniform = 1;
axes; hold on; grid off
rho=1.724e~8; Resistivity of Copper at 20 deg C
a_wire = pi*(0.00082/2)"2; %20 AWG wire
i_wire = [1 1]; % Current distribution (A)
r_wire = [1 1]1; % Radius of loops (m)
z_wire = [0.5 -0.5]; % Height of loops (m)
N=length(i_wire); max_r = max(r_wire); pts = 128; nr=pts;
r_end=max_r; dr=r_end/(nr-1); r=0:dr:r_end; nz=pts; z_end=max_r;
dz=z_end/(nz-1); z=0:dz:z_end; B=zeros(nr,nz,2);
%#This uses the Biot-Savart Law to calculate the magnetic field
%from the superposition of each hoop of line current.
for i_r=1:nr
for i_z=1:nz
for n=1:N
[Br Bz]=current_loop(r(i_r),z(i_z),...
i_wire(n),r_wire(n),z_wire(n));
B(i_r,i_z,1)=B{(i_r,i_z,1)+Br;
B(i_r,i_z,2)=B(i_r,i_z,2)+Bz;
Br = 0;
Bz = 0;



B.2. RHINOCEROS® 3.0 CAD/CAM 103

end

end
end
#Calculate resistance for the specified magnet
Length_winding = 2*pi*sum(r_wire);
R_winding=rho*Length_winding/a_wire;
% Plot the Field Lines - this assumes symmetry around x and z axis
sr_end=max_r; ds=sr_end/8; SR=0:ds:sr_end; SZ=zeros(size(SR));
h_stream(1,:) = streamline(r,z,B(:,:,1)’,B(:,:,2)’,SR,S82);
h_stream(2,:) = streamline(r,-z,B(:,:,1)’,-B(:,:,2)’,SR,SZ);
h_stream(3,:) = streamline(-r,z,-B(:,:,1)’,B(:,:,2)’,-SR,SZ);
h_stream(4,:) = streamline(-r,-z,-B(:,:,1)’,-B(:,:,2)’,-SR,SZ);
axis([-max_r max_r -max_r max_r]) colormap(’pink’)
Error=abs((B(:,:,2)-B(1,1,2))/B(1,1,2));
Error(nr,nz)=percent_uniform*le-2;% Max deviation at 1 percent
Error (Error>Error (nr,nz))= Error(anr,nz);
(X,Z] = meshgrid(r,z);
h_pcolor(1) = pcolor(X,Z,Error);
h_pcolor(2) = pcolor(-X,Z,Error);
h_pcolor(3) = pcolor(X,-Z,Error);
h_pcolor(4) = pcolor(-X,-Z,Error);
shading interp

B.2 RHINOCEROS® 3.0 CAD/CAM

In addition to analyzing the magnetic field lines and uniformity, Matlab was used to write
a text file that could be read into Rhinoceros and rendered. This was important because
Rhinoceros was a much better tool for exploring geometry changes, and it was necessary
in order to produce the type of file, .dfx, that could be used to by the waterjet machine
software. Fig. B-1 shows a rendering of an intermediate design that was produced by

Rhinoceros. Fig. B-2 show one of the flange layouts that was created using Rhinoceros.

B.3 OMAX® Layout and Make

OMAX Layout is a computer-aided machining (CAM) program that can be used to generate
tool paths for OMAX Make, the software program that actually controls the waterjet cut-
ter [52]. Layout was used to import the rhino generated disc patterns and then to generate

tool paths.
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Figure B-1: A 2-D RHINO rendering of an intermediate fluxball machine design.
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Figure B-2: An example of the layout patterns done in RHINO for machining. This is one
of three 48 x 24 in sheets that was arranged with flanges. The alignment details were added
later.
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Appendix C

Fluxball Construction

C.1 Fabrication of Parts

Nearly all of parts for the fluxball machine were fabricated in the MI'T hobby shop using the
OMAX 2626 watejet cutter, shown in Fig. C-1. 80 discs were cut from 0.25 in polycarbonate
sheet. 82 flanges were cut from 0.07 in polycarbonate film. For both discs and flanges, two
sheets were stacked and cut together to save time. One mistake that was made in this
process was the calculation of the disc diameters. The calculation was made before the
actual material was received and measured. The small error in the actual thickness was
small enough that the calculations and processing of the model did not need to be redone,
but it was still significant.

In addition to the discs and flanges, a number of smaller connectors had to be built.
Fig. C-2 shows the two main designs that were employed. The circular pieces held the
top flanges on securely and created a part the could be removed, by simply removing four
screws, in order to change the configuration. The square pieces were used to align the two
hemispheres and to hold the two fluxball structures together. Additionally the square pieces

could be used to construct interchangeable set-ups inside the test chamber.
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Figure C-3: The fixture that was made and used for alighment of the discs and flanges.

C.2 Assembly and Bonding

Notches had been cut into the inner radii of all of the discs and flanges to aid in the assembly.
Nevertheless, a complex fixture had to be built in order to ensure proper alighment of the
individual parts. Figs. C-3 and C-4 show these fixtures. This method is not recommended.
A better method would be to cut two alignment holes in each disc. Then a plastic rod could
be inserted and either bonded or mechanically fastened until the until the bonding step was
completed. These alignment holes would have to be staggered, but this design could easily
be completed using 3-D computer modeling tools.

The waterjet machine leaves a lot of sediment on the parts, so before the parts could be
assembled, they needed a thorough cleaning. All of the discs were washed with soapy water
and then dried. Before final assembly the discs were wiped down with isopropyl alcohol.

Using the alignment fixtures the discs and flanges were stacked one by one. Acrylic
cement was dropped on the surface of the highest part on the stack and then the next part
was laid down. This was done until the entire hemisphere was bonded, then a weight was

put atop the stack and the hemisphere was left for a day to cure. The bonding procedure
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Figure C-4: The alignment fixtures stacked with discs and flanges.

was done in a hood because of the large amounts of acrylic cement that were used.

This procedure left small gaps between some of the flanges and discs where the cement
didn’t make it to the edge, therefore a second round of bonding was conducted. This time
the hemisphere was turned on its side and a small bead of cement was run down the crack
between each disc and flange. The cement filled in the gaps quite nicely. Figs. C-5 and C-6

show the final, bonded fluxball structures.
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Figure C-5: The inner fluxball structure after both bonding procedures were completed.

Figure C-6: The fluxball structures just prior to winding of coils.
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C.3 Winding the Coils

A number of methods were experimented with for winding the fluxballs. The best method
was a lathe assisted method. A plastic rod with an outer diameter of 3/4 in was inserted
into the bits of the lathe. Next the fluxball structure, with a 3/4 in inner diameter access
tube was fitted onto the smaller rod. Finally a spool of wire was secured parallel to the
axis of the sphere so that it could payout easily into the slots of the fluxball. The lathe
was turned at its slowest speed and the loose coupling between the rod and the access tube
turned the hemisphere. The hemisphere could be stopped from turning just by holding it
tightly. In this case the rod would continue spinning, while the hemisphere stood still. This
method increased both the speed and the safety of the operation significantly. The author
was then able to man the spool, ensuring that the correct number of turns were going into
each slot and that the wire was laying nicely and tightly. The diameter of the large fluxball
ball exceeded the height of the lathe bed, so a similar process was used by feeding the rod
out the non bed side of the lathe bits. Figs. C-7 and C-8 show the set-up that was used for

winding the coil onto the fluxball structures.
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Figure C-7: The fluxball structure on the lathe as positioned for winding the coil around
the structure.

Figure C-8: A close-up view of the fluxball structure on the lathe as positioned for winding
the coil around the structure.
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Figure C-9: The electrical connections on the support structure of the fluxball machine.
There are BNC power connections for each of the fluxball windings and banana plug con-
nections for reading the voltage over the 1 Q) current measurement resistors.

C.4 Electrical Connections

As the coil was being wound, solder connections were located approximately every 300 ft.
Besides these connections, the hemisphere had to be connected to each other and the power
sources needed to be connected to each of the windings. Inline male and female connectors
were used to connect the hemispheres to one another. BNC terminals were placed in the left
leg of the outer fluxball structure for connections to power sources. Additionally, banana
jacks were soldered in parallel with the terminals of the 1£2 current measurement resistors.

All of these details can be seen in Fig. C-9.

C.5 Final Configuration

The final configuration is discussed in detail throughout this thesis. Figs. C-10-C-12 show

various details of the fluxball machine.
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Figure C-10: An interior view of the four winding hemispheres.

Figure C-11: An exploded front view of the fluxball machine.
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Figure C-12: The fluxball machine with the outer winding canted outwards.



Appendix D

Specifications

D.1 Fluxball Materials

All of the materials for the fluxball machine were ordered from McMaster-Carr.

Part Number: 7588Ke1 $49.30 per Spool
Type Single-Conductor Wire and Cable
Single-Conductor Wire and Cable Magnet Wire
Type
Gauge {(AWG) 20
Number of Conductors 1
Conductor Type Sohd
Conductor Material Enamel-Coated Copper
Temperature Range Up to +392° F {Up to +200° C}
Duter Diameter 035"

Length agn’
Specifications Met National Electrical Manufacturers

Association (NEMA) and Underwriters
Laboratories {UL)

NEMA Specification 1000 MW-35C and 1000 MW-73C

UL specification UL Recognized

117
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Part Number: 8574K75 $177.31 Each
Material Polycarbonate
Polycarbonate Material Polycarbonate
Backing Plain Back
Shape Sheets, Bars, Strips, and Cubes
Sheets, Bars, Strips, and Rectangular Sheet
Cubes Type
Thickness 1/4"
Thickness Tolerance +0 to -.026"
Length 8'
Length Tolerance +.625"
Width 48"
Width Tolerance +.625"
Clear Clear with No Tint
Operating Temperature -40° to +240° F
Range

Performance Characteristic High Impact Strength and Flame
Retardant and weather Resistant

Tensile Strength 9000 psi
Impact Strength 12 ft.-lbs.fin.
Tolerance Standard
Hardness Rockwell R: 118
Specifications Met Underwriters Laboratories (UL)
UL Rating UL 972 and UL 94HB
Part Number: 855a5KzS $12.18 Each

Material Polycarbonate

Polycarbonate Material Polycarbonate

Backing Plain Back

Finish Smooth on Both Sides

Shape Filmn

Thickness .0z"

Thickness Tolerance +,001"

Length 48-1/2"

Length Tolerance +.063"

Width 24-1/2"

Width Tolerance +.063"

Film Type Standard

Clear Clear with No Tint

Performance Characteristic Flame Retardant

Tensile Strength 9000 psi

Impact Strength 12-16 ft.-1bs./in.

Tolerance Standard

Specifications Met Underwriters Laboratories {UL)

UL Rating UL 94v2
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VISHAY RH, NH
v Wirewound Resistors, Military, MIL-PRF.18546 Qualified,  Vishay Dale
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-
RH, NH VISHAY
Vishay Dale Wirewound Resistors, Military, MIL-PRF- 18546 Qualified,
Type RE, Aluminum Housed, Chassis Mount
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RH, NH

Wirewound Resistors, Milliary, MIL-PRF-18546 Qualified,

Vishay Dale

Type RE. Aluminum Housed, Chassis Mount

MATERIAL SPECIFICATIONS

Element: Coppar-moket alloy or aiikel-chrame alloy,
depanding on resislance vaug

Care: Uwramic, sigatite of alumang, depanding on physical
sire

Encapsulant: Siicons mokded congtnation

Housing: Aluminum with hard anadic coating

End Caps: Stainipss siesl
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&*
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finigh,

Part Marking: DALE. Mecdst, Wattage, Value, Toleranos,
Date Uode
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D.3 National Instruments BNC 2120

1 68-Position VO
Conneclor

) 2 Power Indicator LED
3 Quadrature Encoder
A A g, PR + ‘,(,2.\’) Knob
ML T RO BN N 4 Quadrature Encoder
i Qulput Screw
Teminals
& TIO Screw Temminals

6 DIO LED State
Indicators

(3) 7 DIO Screw Tenminals

' 8 Function Generator
Ampilitude Adjust
Knob

4 9  Function Generator
Frequency Adjust
Knob

10 Sine/Triangle
Waveform Selection
Switch

11 Frequency Range
—(5) Selection Switch

12 Floating Source {(FS)/
Ground-Referenced
Source {(G8) Switch

13 BNC Connsctor

14 BNC/Thermocouple
Selection Switch

a— 15 BNG/Temperature
L Reference Selection
T Switch
16 Temperature
Refarsnce
- 17 Thermocouple Input

Conneclor
18 Resistor
Measurement Scraw
- Terminals
QE-HINdr  1-100EHE 133000 kHe TN 19 Resistor/BNC
{ ; Selection Switch

Srwren 135
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D.4 AE Techron Inc LVC 5050 Amplifier

The LEES facility in building N10 operates two of these amplifiers. Although these ampli-
fiers look identical, one is actually an older model that is operated differently. In the older
model, the front panel controls have been disabled so that the only voltage controls are the

on/off switch and the gain selector in the rear.

APPLICATION
The LVC 5050 is a general purpose,

high voltage, medium continuous
current, linear. power.amplifier. It
works best when driving loads of

2 - 16 ohms. The LVC 5050 works
well with either pulsed. or o R ) ) —
continuous. test-signals-or e AE Techron, Inc. LVC 5050
environments that have both ]
conditions. The LVC 5050 has two (2) separate channels that can be operated independently or combined for greater
maximum voltage or currerit. In Bridge-mono mode the available output voltage doubles. In Parallel-mono mode the -

amplifier operates with twice the available output current

FEATURES

» Bi Level ™ Power Supply, amplifier optimizes itself for cither, high puise voltage or low voltage high currént,
dynamically. The LVC 5050 produces less heat, higher long term power, with no added distortion.

» Qutput of 20.0 amperes rms, or 106 volts rms, per channel depending on load.

» Frequency bandwidth of DC to 20 kHz at full power.

» Option of controlled voltage, or controlled current.operation, modes changed via a jumper

» User-adjustable voltage or current limitirig
» Remote switching to standby mode by contact closure
» External monitoring of voltage and current output

» Equipped with circuitry to protect the amplifier from nput overloads, improper output connection (including shorts and

~ improper loads), excessive temperature, voltage or current. i

» Shipped ready to operate using single-phase, 120-volt AC mains. Also available in 100, 200, 208, 230 and 240 VAC
versions: : :

» Installs easily into a standard 19 inch rack, or stands alone for bench top operations

INDICATORS AND CONTROLS

¥ Frorit panel LEDs indicate signal presence and output ° . e
overload . - & Z::" OVER.OAD %
> l?pulshbutton power “On/Off” located on the front f,/ & g ,
ane : oy

» Two gain controls on the front panel for controlled
voltage applications

» A back panel slide switch to'lift signal ground from chassié ground

P A back panel slide switch to choose between 2 channel, bridge mono and parallel mono operation

Call us or visit.our website! When your project.or product requires a low noise, low distortion, high power amplifier
solution, contact AE Techron Inc. We are happy to help.
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PERFORMANCE (One hour continuous ratingsy Output PoweR LVC 5050
Frequency response 40 mSec 1 Hour Continuocus
+/- 0.1 dB from 20 Hz to 20 kHz at 1-watt -
Q Ohms |Watts | Volts ] Amps | Watts | Volts | Amps
Phase response g
+/- 10 Degrees (10 Hz to 20 kHz at 1 watt 5 2 2505 |71 35 fso0 |40 [20
Signal-to-noise ratio o |4 1940 [ 88 22 576 |48 12
At 26 dB gain, better than 105 dB (A-Welghted) below %D 8 1270 {101 12 1205 losa |12
full output 77}
16 702 106 7 702 106 7
THD . : - - -
Less than 0.05% from 20 Hz to 1 kHz increasing .
40 mS; 1 Hour Cont
linearly to 0.1% at 20 kHz at full output g e ouronmeess
I.M. Distortion LS Ohms { Watts | Volts | Amps | Watts | Volts | Amps
<0:05% from 410 milliwatts to full output at 26 dB gain 'g?-?n 4 5320 | 146 36
with and 8 ohm load E 8 3003 155 19 [3003 Jiss |19
Sleg;f\t,ep or microscoond 16 |2036 f1s0 |11 [2036 [130 [n1
Load Impedance oS - -
Rated for 16,8,4.and 2 ohm use. Safe with all load types moee our Continuous
evén reactive ones. % Ohms | Watts | Volts | Amps | Watts | Volts | Amps
Input Impedance . = 5320 |73 73
Greater than 10K ohms, balanced, and SK ohms °
unbatanced: g 2 4045 |90 45
Output impedance A 14 2670 [103 26 2416 [98.3 |25
Less than 10 milliochms in series with less than 2 8 1378 1105 13 1324|1029 |13

microhenries

AE Techron LVC5050  sovainumber usoo-00c0

< oo

PHysICAL CHARACTERISTICS

Chassis: The Amplifier is designed for stand aione,yor rack mounted, opei‘ation. The Chassis is black steel with a silver
finished aluminum front panel.. The unit occupies three EIA 19-inch-wide units.

Weight: 77 1bs. (35.2 kg), Shipping 88 Ibs. (40.2 kgs) .

AC Power: Single phase, 120 volts, 60 Hz, 30 amperes ac service. (Note: 100, 120, 200, 208, 230 or 240 volt, 50-60 Hz
models are available Call for specifications.) US models come with 3 blade NEMA TT30P plug.

Cooling: Forced air cooling fromm the front, through removable filters, to the back:
Dimensions: 19-in. x 16 in. x 5.25 in (48.3 cm x 40.3.0-em x 13:3 cm)

SUPPORT
When you purchase-an AE Techron amplifier, -a full complement-of

technical and fact rt 1] 1 AE Techron Inc. I
perzvxl];c; and factory support personne join your team. AE Techron lnc.

» Applications engineering for your technical questions and customized 2507 Warren: Street
product needs. Elkhart, IN 46516 USA

> Aone year limited warranty to protect your equipment investment. ~ Phone: 5§74-295-9495

» A fully equipped service center to keep your amplifier operating at Fax: 574-295-9496
original performance requirements. " E-mail: Sales@aetechron.com

Web: www.aetechron,com
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D.5 F.W. Bell Three Probe and 7030 Teslameter

B - i;<—o.mu~
4 0060
-~ HALL PLATES
2 By g }8 MUTUALLY
5} PERPENDICULAR :2¢
. - f PAINTED AREA o,gs:’“ f 0(?64" n}m*
. 0.750" $0.063" — ORNOTCH HALL
Standard 3-Axis Probes PLATE
S Linearty e Nogsinal | Oper. Temp. Stabifity (Max}
Stem Frequency  [Sessitity N 3 8
A 8 c o v I3 G Materiat] oo N Active | Temp. fro Calitate
Model > Materia Feading Rarge ea | Romge | 640 )
. FOATI-3208-05
ZOA73-3208-05T
ZOA73-3208-15 8.0" 0312 / 0.25%to}] DCte 1x | 0080 {PCto] 4o g -0.040
20A73-320815:T 01250 |soons] NA ] N NIATNAA )N AML Taae T soare Dia, |e780¢ | 0100 -
| ZOA73-320830
ZOA73-3208-30-T
Description

The Model 7030 three-channel GAUSS/TESLAMETER from F.W. Bell leads the way
for Advanced Hall Effect Magnetic measuring technology. The easy-to-use front panel
programming feature incorporates the latest in user control operations. The 7030 is
capable of simultaneously measuring and displaying seven different parameters per
channel -- flux density, frequency, temperature, min, max, peak and valley. With the
7030’s vector summation feature, that makes a total of 27 different parameters.

This high accuracy instrument is fully equipped to meet most magnetic measuring
applications. Bell's exclusive dynamic probe correcting software increases the 7030
measurement capabilities to make it the most versatile magnetic measuring tool in
the world.

Key features include high-resolution, high-accuracy and high-speed with a large graphic
electroluminescent display. The 7030 features 50 kHz frequency response, temperature
and frequency measurements, Auto Zero, Auto Range, Hold functions for Peak, Valley,
Min and Max, corrected and uncorrected outputs for each channel and Vector
Summation and angle. The Model 7030 provides the user with gauss, tesla, Oe, A/m,
IEEE-488 and RS-232 communications ports and Classifier output.

The 7030 operates with Bell's fifth generation Hall Effect probes. These probes provide
temperature compensation and measurement readings (0°C to +75°C) while
monitoring the magnetic field. The easy-to-read 1/4 VGA display is easily viewable in
most light conditions and can be customized to meet a user’s specific needs.
Applications range from basic magnetic measuring to sensitive complicated three-
axis vector summing requirements. All instruments are fully CE compliant.

Features

* Bright 1/4-VGA Readout * Fully menu-driven for easy operation
* Large electroluminescent graphic display * Auto Zero and Auto Calibration

« Over 100 standard probes available * |[EEE-488 and RS-232 interface

* Automatic probe coefficient correction ¢ CE Compliant

* Displays in Gauss, Tesla, Amp/meteror Oe ~ * Manufactured to ISO 9000 standards
+ Relative Mode * Comprehensive Technical Support
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SPECIFICATION

Ranges

Resolution

Accuracy (Displayed Reading)
dc basic
ac basic

Frequency Range
dc mode
ac mode

Accuracy (Corrected Analog Output)

dc basic
ac basic
Frequency Range

Frequency Range (Uncorrected Analog Output)

dc mode
ac mode

Analog Output
Output Voltage
Source Impedance
Connector

Additional Influences
Temperature Coefficient

Temperature Range
Operating
Storage

Front Panel Dispiay

Communication Ports
RS-232
Baud Rate
|IEEE-488
Protocol

Power

Size
Width
Height
Depth

Weight
Net
Shipping

1 4G (0.1nT) to 1G (0.1mT) (Depending on probe selection)

300mG (30uT)* 3kG(300mT) ;!

3G (300pT)*  30kG (3T) PN

30G (3mT)  300kG(30T)t * Low field Ay
probe

300G (30mT) T High field probe

+0.05% of reading N
+2% of reading

dcto 250Hz
20Hz to 50kHz

+0.1% of range
+2% of range
dc to 500Hz

dcto 100Hz
20Hz to 50kHz

+3V PS. or +10V F.S. or adjustable from 0.1 - 9.9V
<100 ohms
Standard BNC

+(0.02% of reading +1 count)/ °C

0°C to +50°C
-20°C to +60°C

1/4 VGA, 320 x 240 pixels

Electroluminescent graphic display with 4 shades of amber
4.7 (1129 mm)yW x 3.5” (89mm) H

Standard 9-pin “D” connector
300,600,1200,2400,4800,9600,19200,38400 bits/sec

Standard 24-pin GPIB connector
P —
m
[FW BELL]

|EEE-1987.2 and SCPI-1999

Volts: 100/120 or 220/240
Frequency: 50-60 Hz or 50-60 Hz
Current:  1.0A (max)or 0.5A (max)

16.3” (414 mm)
52" (132mm)
13.5"(343mm)

19.6 Ibs. (8.9 kg)
25.8 Ibs. (11.6 kg)

SYPRIS

TEST & MEASUREMENT

Due to continuous process improvement, specifications subject to change without notice.
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D.6 GMW Three Axis Magnetic Field Sensor

Am etes Magnetic Field Sensor - 3 Axis, MF5-3A

The high magnete field sensitivity, accurate calibration, high
stability and high signal output of the Sentron C8A-1V Hall effect
167 enable it to be conveniently used to monitor the extended ficlds
from magnetic items and clectiie equipment. As a demonstration ot
the CSA-1V cupability, three CSA-TV with sensitive wxes mutually
perpendicular, are combined in 2 compact module ag the MFS-3A,
Three sutput voltages Vy = SeBly, Vo = 98By and ¥, = 8«By are
generated proportional to the magnetic flux density componens By,
By and By with the sensitivity $ = 280mVimT over the field range of
7. 3mL. This enables caloulation of the tial magnetic flux density,
f i By:’ 3 8?* (TR {:‘\V,N;i Vy.’ }\Tzh} S‘

Specifications

* Measures By, By By
* Suitable fr environmental magnetiv fiekds

® Field vange: &7 3mT (073G

* Resolution: £ 10} (#4013

* Three linear anslog outputs Voo, Vo, Vo of 83V 0 4.5V
* Sensitivity: § = 280mV/mT i

* Aceuracy: +3%

* Angular alignment: +3deg

* Frequency response de to 100kHz (-3dB)

w Smadl sizer 102135 % [2mm (.39 2 (1053 X 0.4%nch)
* Low weighr 2.5z (0.1e2)

* Low power: 36mA ma

Applications:

* Guality assurance of magnetized materials and itoms such as sealing strips and penmanent magnets by fast
and complete charscterization of the external magnetic field.

* Letection/separation of magnehc and non-magnetic matenals by montoring the modification of the local
or imposed ﬁafd caused by magnetic tem/items.

* Nomegomtact, nop-invasive and continuous “Condition Mondtoring™ of electrical motors, penerators,
transformers or inductors by comparing the amplitudes of sclected extemal or “leakage™ field spectral
components with initial or reference vahues, Quality asswrance of electiical components by Jeakage 113
measurement.

* Independent monttoring of the OMNAOFF status of farge magnets with extended fringing fields. The MFS-
3A output can be used 1o operale waming indicators andior mterlocks. Resolution of «10uT readily allows
measurement of the S00pT (54 sufety level applicable to Magnetic Resonance Imagers (MR

* Wearable, baltery operated “Personal Magnetic Field Deteetor™ to immediately generate a warning 1o the
wearer that they have entered a region of moreased magniude magnetic fleld,

* Magnetie fickd detection and warming or interlsek o be incorporated in magnetically sensilive equipment
such as time standards or patient support equipment that may be used in the fringe field of an MR or other
large magnet.

Specifivations rabject ¥ chiige. For the Intes Speoificaion refer i thy Senis or (MW websies, Revision Thte $Fcbs 2007 AFS-34
Kurope Senis Gibil: Technoparkstrasse 1, 8005 Zawich, Switzerland. sww.senis.ch. +44 {79) 266.8756
The Amerlcas - GMW Asserdates; 935 Indusirial Rowd, 8au Carlos, CA 24078, USA. www ginwacom, + 1 (6503 8625292
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SentronCSA -1V
GMW o

CSA-1V
CurrentSensor
Features: Applications:
s Sensiive t a magnetr feH parmlkelo e AC andhrDC cumentm easurem ent
the chp surface e W He-Band M agnett FH
Very hgh sensiwviy M easurem ent
s Liearoutputvolage proportbnalto a ¢ BateryChamers
m agnete field ¢ ACDC Converers
e W ideband:DC to 100kHzZ ¢ MowmrContol

Very bw offsetand offset-drift
Very bw noise

bohted fftom cunentconductor
Surface m ountSO I -8 package

GeneralDescription

The CSA -V i a shgk-axks hitegrated magnetc fiel sensor based on the Halleffect. The cicut H

fabrrated ushig a conventbnal CMOS technobgy wih an addibnal fenom agnett hyer. The)

ferrom agnetic Jayer i used as a m agnetic flix concentatorproviliig a hgh m agnet gain. Thereforg

the circut featues very high m agneti sensiwvity, bw offset, and bw noke.

The CSA-V & packaged 1 a standard SO I -8 millphste package.This package proviles:
s highest Bohton Prapplratbons wih the curent conductoron the PCB {up to 600V)
e hihestsensiviy Prapplratons wih the curent kad above the chp.

Package: sor-8

Pin Out:

1 A_OUT, anabg sensoroutput
Voo Pos.suppl volage
Notconnected

PV, programm hg volage *
GND , supply comm on
PD,programm hg data =
PC ,program m g cbck B
CO_OUT, comm on output

)

[+ BN B S BV )

Note 1:Used Dricory progmm m g

Manufactured by: sentron AG @A Melexis Company) ® Baarerstrasse 73 ® €300 Zug ® Swizerhnd o Tel:+41 €1)711

170 e Fax-.dl (411711 2183 wu nhonch ¢ sales@ sentmp oh @

GMW Associates. 955 dustrialRd, San Carbs, CA 94070

www gmw .com . Tel: (650)802-8292. Fax: (650) 802-8298. Emailsales@ gm w com
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Sentron CSA -1V
G M W Revied Jan 2005

Absolute M axin um Ratings
| Swmbol | Pammes | ¥E p. | max.
Vsup Supply Volage 6 v
T Ambint Tem perature 40 +150 C

Recomm ended O perating Conditions

Suppl Volage

OutputCunent

Load C apaciance

EkctricalCharacteristics
AtT=40°C © 150C, Vyyp=4 5V t» 5 5V fnotothemw Be specied.

Tor

Supply C

Veeommon Common érefexze)nce) Voup2 | Vaup 2 | Veup/2 Lur=0mAa
OutputvVolage 20mV +20mV

BW Bandw ©ith:DC © 100 kH z

& Response Tine 6 us

Note 2:Ratom etric proportional to Vsve)

Characteristics ofthe LinearM agnetic Fi1d Sensor®*’
W ih Vsup= 5V and n the tem perature mnge 40°¢ t150°C, fnotothew e specifed.

. X
M agnetic Sensiiviy
AS [SAT M agn. Sensiviy - 002 % AC Dor=0mA
Tem perature D rift 0.02 T=20°C t© 125°C
Voft o flsetVolage ' 15 0 15 mnv B=0T, but=0mAa,
T=20°C
Boff E:)quivahntM agnett O fiset 50 0 50 aT B=0T, Ly;=0mA
T=20°C to 80°C
AVoffAT O fisetTem permature Drift 02 0 0.2 mV/AC B=0T, Lyr=0mA,
T=20°C to 125°C
Brs FullScak M agnetc Fld 75 7.5 mT
Range ®
BL LiearM agnett Fld 5 5 mT
R ange
NL Non Lnearty 0l 02 1 B-B
05 1 J— B = Bps
ABnoise hputefened m agnett noke 125 | nTAHz | £10HzZ t© 10kHz

spectum densiy RMS)
Note 3 :Ratbmetrt proportbnalio Vsue )
Note 4 :W hen the anabg outputpihh A_OUT & used h diferenthlmode (e Vout=A_QUT ~CO_OUT)
Note 5:Devie satmates HDrR>Bg but 5 notdamaged
Note 6:Specfratbn conectbn:W as 300+ /410 V/I.Now 280+/ 10 V/,I'. Allpans manuficured to date, have been calbmted

D 280+ £V /T
Manufactured by: senton AG (B Melsxis Company) ® Baarerstasse 73 ® 6300 Zug ® Switzerlnd e Tel:i+41 @1)711 e
170 @ Faw- .41 (41) 731 2188 A ANANS nbonnch e ales@ Vohuiataiial NN 1

GMW Assocites. 955 hdustrialRd, San Carbsg, CA 94070
www gmw.com . Tel: (650) 802-8292. Fax: (650) 802-8298. Emailsalesé gm w com
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GMW

SentronCSA -1V

Revbed Jan 2005

Blck Diagram
s o e
o o
2 3
o,
”m w"\..
el | Modusior Aoy e ChetrenhR
Elomart | i P B 1 G0 OUT
=
S Bulerd& | 1 -
Cancrintion i ()} A OuUT
@ sl
sogte-antiod
Biasing || g L Sp—i )
bpovs Prosgrtenming Linit el TR
4] 71 =
{ A; i
Py PG PO

Fiy.1 Bbdckdhgrmm ofCSA 1V

MPORTANT
as Dlows:

ConnectPh 6 PD)® P 5 GND)
ConnectPn 7 PC)t Pn 2 ¥dd)
ConnectPih 4 PV)® PN 2 Vdd)
Puta 100nF capaciorcbse o the chp between Ph 2 (Vdd) and Ph 5 GND)

Vsup

CSA 1V
1A_Qut CO OUT 8
2vdd pe 7
3nc. PD 6
1PV GND 5
J = GND
100nF" ==

GND s

" fthe suppy volage i ditubed by EM I tcan be usefilto phce a second capacior 00pF,
cermm t) paralelio the 100nF capacior.

Fiy.2 Connecton dhgram ofCSA-1V

Forelabk opermtion wihin the specifiratbns the sensormustbe connected

Manufactured by: sentoon AG @ M elexis Company) ® Baarsistrasse 73 ® 6300 Z2ug @ Swizerkhnd e Tel:i+41 @1) 711

120 e Fax:a41 (43371121 IRININS nin ol e sales@ sentyan oh. @

GMW Associates. 955 hdustrialRd, San Carbs, CA 94070
www gmw.com . Tel: (650)802-8292. Fax: (650) 802-8298. Em ailsals@ gmw com
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SentronCSA -1V
GMW e

Package hfom ation SO -8

B: Magnetic sensidve direction

£

0.158 (4.01) 0.244 (6.20)
0.150 (3.81) 0.228 (5.79)

3

i

3
¥
= 0.018 (0.46) 0.015 (0.37)
| 0014(0.36) Min.
0.022(0.56) 0.058 (1.50) 0.069 (1.75) 0012 03)

0018(0.046 " | 0.049(1.24) 0053(1.35) | 45°

1 ¥ ' : :
Sieisisy N f .j'(:::‘ﬁgx, |
; - , —

0.188 (4.78) 0.007 (0.18)

Fy.3 Package hfom atbn and m agnetic sensiive diecton

O rderng hifom ation
O rderpartnumber:CSA-1V -850
Pans are suppled on ape and reek.

Quantiies bebw 2600 pcs are avaibbke h cutreek to the quantity ordered
Quanties above 2600 pcs are avaibbke h complkte 13", 2600 pc ek

Manufactured by: Sentron AG @ M zlexis Company) ® Baarerstrasse 73 ® 6300 Zug @ Swizerlnd e Tel:+41 @1)711
2170 @ Fax-.41 (413711 21 kA2 nboonch ¢ sales@ sentyonch @

GMW Associates. 955 ldustialRd, San Carbs, CA 94070
www gnw .com . Tel: (650)802-8292. Fax: (650) 802-8298. Em ailsalese gm w com




Bibliography

1]

4]

[5]

[6]

[7]

Eleuthre Elie Nicolas Mascart, J. Joubert, and E. Atkinson, A Treatise on Electricity
and Magnetism. London: T. De La Rue, 1888 1883, by E. Mascart and J. Joubert. Tr.
by E. Atkinson.; 2 v. illus., diagrs., tab. 24 ¢m; I. General phenomena and theory.—II.

Methods of measurement and applications.

H. A. Haus and J. R. Melcher, Electromagnetic Fields and Energy. Englewood Cliffs,
N.J.: Prentice Hall, 1989.

J. W. Clark, “A New Method for Obtaining a Uniform Magnetic Field,” Review of
Scientific Instruments, vol. 9, no. 10, pp. 320-322, October 1938. [Online|. Available:

http://link.aip.org/link/7RSI/9/320/1

J. William F. Brown and J. H. Sweer, “The Fluxball A Test Coil for
Point Measurements of Inhomogeneous Magnetic Fields,” Review of Scientific
Instruments, vol. 16, no. 10, pp. 276-279, 1945. [Online|. Available: http:

/linkaip.org/link/7RSI/16/276/1

J. E. Everett and J. E. Osemeikhian, “Spherical Coils for Uniform Magnetic Fields,”
Journal of Scientific Instruments, vol. 43, no. 7, pp. 470-474, 1966. [Online|. Available:

http:/ /stacksiop.org/0950-7671 /437470

F. Primdahl and P. A. Jensen, “Compact Spherical Coil for Fluxgate Magnetometer
Vector Feedback,” Journal of Physics E: Scientific Instruments, vol. 15, no. 2, pp.
221-226, 1982. [Online|. Available: http://stacks.iop.org/0022-83735/15/221

J. A. H. Jr., “Magnetic field generator,” Patent, December 1941.

133



134

(8]

(9]

[10]

1]

12)

[13]

[14]

[15]

[16]

[17]

[18]

[19]

BIBLIOGRAPHY

K. N. Henrichsen, “Magnetic Field Imaging,” CERN Accelerator School Materials.

J. L. Symonds, “Methods of Measuring Strong Magnetic Fields,” Reports on
Progress in Physics, vol. 18, no. 1, pp. 83-126, 1955. [Online]. Available:

http://stacks.jop.org/0034- 4885 /18 /33

R. E. Rosensweig, Ferrohydrodynamics. Cambridge ; New York: Cambridge University
Press, 1985.

M. Zahn, “Magnetic Fluid and Nanoparticle Applications to Nano-Technology,” Jour-
nal of Nanoparticle Research, vol. 3, pp. 73-78, 2001.

S. M. Elborai, Ferrofiuid Surface and Volume Flows in Uniform Rotating Magnetic
Fields, 2006.

X. He, Ferrohydrodynamic Flows in Uniform and Non-uniform Rotating Magnetic
Fields, 2006.

Multiphysics, COMSUL, Inc., 1 New England Executive Park, Suite 350, Burlington,
MA 01803. [Online]. Available: http://www.comsol.com

J. Roger, J. Pons, R. Massart, A. Halbreich, and J. Bacri, “Some Biomedical Applica-
tions of Ferrofluids,” Fur. Phys. J. AP, vol. 5, pp. 321-325, 1999.

A. Halbreich, J. Roger, J. Pons, D. Geldwerth, M. Da Silva, M. Roudier, and J. Bacri,
“Biomedical Applications of Maghemite Ferrofluid.” Biochimie, vol. 80, no. 5-6, pp.
379-90, 1998.

D. Montgomery, Solenoid Magnet Design. Wiley-Interscience, 1969.

R. Merritt, C. Purcell, and G. Stroink, “Uniform Magnetic Field Produced by Three,
Four, and Five Square Coils,” Review of Scientific Instruments, vol. 54, no. 7, pp.

879-882, 2006.

J. C. Alldred and I. Scollar, “Square Cross Section Coils for the Production of
Uniform Magnetic Fields,” Journal of Scientific Instruments, vol. 44, no. 9, pp.

755760, 1967. [Online]. Available: hitp://stacksiop.org/0050-7671/44/755



BIBLIOGRAPHY 135

[20] M. W. Garrett and S. Pissanetzky, “Polygonal Coil Systems for Magnetic
Fields with Homogeneity of the Fourth to the Eighth Order,” Review of
Scientific Instruments, vol. 42, no. 6, pp. 840-857, 1971. [Online|. Available:

htip://link.aip.org/link/7RSI/12/840/1

[21] D. Ginsberg and M. Melchner, “Optimum Geometry of Saddle Shaped Coils for Gen-
erating a Uniform Magnetic Field,” Review of Scientific Instruments, vol. 41, no. 1,

pp. 122-123, 2003.

[22] M. Jensen, J.H.; Abele, “Generation of Highly Uniform Magnetic Fields with Magne-
tized Wedges,” Transactions on Magnetics, vol. 34, no. 4, pp. 2316-2323, 1998.

[23] M. Zahn, Electromagnetic Field Theory : a Problem Solving Approach. New York:
Wiley, 1979.

[24] H. Saint-Jalmes, J. Taquin, and Y. Barjhoux, “Optimization of Homogeneous
Electromagnetic Coil Systems: Application to Whole-body NMR Imaging Magnets,”
Review of Scientific Instruments, vol. 52, no. 10, pp. 1501-1508, 1981. [Online].

Available: http://link.aip.org/link/7TRS1/52/1501/1

/

[25] M. W. Garrett, “Calculation of Fields, Forces, and Mutual Inductances of Current
Systems by Elliptic Integrals,” Journal of Applied Physics, vol. 34, no. 9, pp.
2567-2573, 1963. |Online]. Available: http://link.aip.org/link/?JAP /34/2567/1

[26] ——, “Axially Symmetric Systems for Generating and Measuring Magnetic Fields.
Part 1,” Journal of Applied Physics, vol. 22, no. 9, pp. 1091-1107, 1951. [Online].

Available: hitp://link.aip.org/link/7JAP/22/1001/ 1

[27] W. C. Elmore and M. W. Garrett, “Measurement of Two-Dimensional Fields. Part I:
Theory,” Review of Scientific Instruments, vol. 25, no. 5, pp. 480-485, 1954. [Online].

Available: hitp://link.aip.org/link/7RSI/25/4%0/1

[28] J. Maxwell, Treatise on Electricity and Magnetism. New York: Dover Publications,
1954.



136

[29]

30]

31}

[32]

[33]

[34]

[35]

(36]

37)

BIBLIOGRAPHY

M. W. Garrett, “Table of Solenoids with Sixth-Order Error and Near-Maximum
Power Efficiency,” Journal of Applied Physics, vol. 40, no. 8, pp. 3171--3179, 1969.

[Online|. Available: http://link.aip.org/link/?JAP/10/3171/1

J. R. Barker, “New Coil Systems for the Production of Uniform Magnetic Fields,”
Journal of Scientific Instruments, vol. 26, no. 8, pp. 273-275, 1949. [Online|. Available:

http://stacks.jop.org/0950-7671/26/273

———, “The Magnetic Field Inside a Solenoid,” British Journal of Applied Physics, vol. 1,

no. 3, pp. 65-67, 1950. [Online|. Available: http://stacks.iop.org/0508-3443/1/65

W. Braunbek, “Die Erzeugung Weitgehend Homogener Magnetfelder Durch Kreis-
strome,” Zeitschrift fir Physik, vol. 88, pp. 399-402, 1934.

P. R. Robinson, “Improvements to the System of Four Equiradial Coils for Producing
a Uniform Magnetic Field,” Journal of Physics E: Scientific Instruments, vol. 16,
no. 1, pp. 39-42, 1983. [Online]. Available: hittp://stacks.iop.org/0022-3735/16/39

K. Kaminishi and S. Nawata, “Practical Method of Improving the Uniformity
of Magnetic Fields Generated by Single and Double Helmholtz Coils,” Review
of Scientific Instruments, vol. 52, no. 3, pp. 447-453, 1981. [Online|]. Available:

http://link.aip.org/link/ 7RSI/ 52/447/1

R. S. Caprari, “Optimal Current Loop Systems for Producing Uniformm Magnetic
Fields,” Measurement Science and Technology, vol. 6, no. 5, pp. 593-597, 1995.

[Online|. Available: http://stacksiop.org/0057-0233/6/593

M. W. Garrett, “Thick Cylindrical Coil Systems for Strong Magnetic Fields
with Field or Gradient Homogeneities of the 6th to 20th Order,” Journal
of Applied Physics, vol. 38, no. 6, pp. 2563-2586, 1967. [Online|. Available:

i

http:/link.aip.org/link/7JAP /38/2563/1

J. Jensen, “Minimum-volume Coil Arrangements for Generation of Uniform Magnetic

Fields,” Transactions on Magnetics, vol. 38, no. 6, pp. 3579-3588, 2002.



BIBLIOGRAPHY 137

[38]

[39]

[40]

[41]

[42]

[43]

44)

[45]

[46]

(47]

L. B. Lugansky, “On Optimal Synthesis of Magnetic Fields,” Measurement
Science and Technology, vol. 1, no. 1, pp. 53-58, 1990. [Online]. Available:

i

htip://stacks.iop.org/0957-0233/1/53

——, “Optimal Coils for Producing Uniform Magnetic Fields,” Journal of Physics
E: Scientific Instruments, vol. 20, no. 7, p. 932, 1987. [Online|. Available:

http://stacks.jop.org/0022-3735/20/932

”

——, “Optimal Coils for Producing Uniform Magnetic Fields,” Journal of Physics
E: Scientific Instruments, vol. 20, no. 3, pp. 277-285, 1987. [Online|]. Available:

http://stacks.iop.org/0022-3735/20/277

Matlab, The MathWorks, Inc., 3 Apple Hill Drive, Natick, MA 01760-2098. [Online].

Available: http://www.nathworks.com

Rhinoceros, McNeel North America, 3670 Woodland Park Ave North, Seattle, WA
98103. [Online]. Available: http://www.rhino3d.com

An Introduction to the Hall Effect, F.W. Bell Magnetics, A Sypris Test and
Measurement Company, 6120 Hanging Moss Road, Orlando, Florida 32807. [Online].

Available: http://www.sypris.com/library/documents/hallcatalog.pdf

MSG W11 Ferrofluid, Ferrotec Corporation, 33 Constitution Drive Bedford, NH

03110. [Online]. Available: http://www.ferrotec.com

P. E. O. Ships, DDG 1000, U.S. Navy, 1333 Isaac Hull Avenue S.E., Washington Navy
Yard, D.C. 20376. [Online|. Available: http://peoships.crane navy.anil/DDG1000/

K. R. Foster, “Review of Carpenter and Ayrapetyan (Editors), Biological Effects of
Electric and Magnetic Fields. Vol. 1: Sources and Mechanisms. Vol. 2: Beneficial and
Harmful Effects,” Biophys. J., vol. 67, no. 5, pp. 2123-2124, 1994. [Online|. Available:

hitp://www.blophys].org
i BASA -

F. Barnes and B. Greenebaum, Handbook of biological effects of electromagnetic fields.
CRC Press, 2007.



138 BIBLIOGRAPHY

[48] P.Stavroulakis, Biological Effects of Electromagnetic Fields: mechanisms, modeling, bi-
ological effects, therapeutic effects, international standards, exposure criteria. Springer,

2003.

[49] 1. Nair, M. Morgan, H. Florig, O. of Technology Assessment, U. States, and Congress,
Biological Effects of Power Frequency FElectric and Magnetic Fields. Congress of the
US, Office of Technology Assessment: For sale by the Supt. of Docs., USGPO, 1989.

[50] L. A. Sagan, Electric and Magnetic Fields: Invisible Risk? Taylor Francis (UK), 1996.

[51] E. B. Association, “Queen Mary 2 Podded Propulsors,” internet. [Online]. Available:

http://www.electric-boat-association.org.uk/

[52] Omax Make and Omaz Layout, Omax Corporation, 21409 72nd Ave South Kent, WA

98032. [Online]. Available: htip://www.omax.com





